Analysis of Splicing Regulation by Third-Generation Sequencing

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

Abstract

In Metazoa, the diversity of transcripts produced by the RNA Polymerase II is generated essentially through post-transcriptional processing of the nascent transcripts. The regulation of exon inclusion by alternative splicing is one of the main sources of this diversity, which leads to the expansion of the proteome. The portfolio of alternative transcripts remains largely underestimated. Improvement of the sequencing technologies has enhanced the characterization of RNA isoforms and led to the perpetual incrementation of gene expression diversity. Here, we describe a high throughput approach to assess in-depth the splicing regulation of target gene(s) using the third-generation sequencing (TGS) technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5’ terminus of adenovirus 2 late MRNA. Proc Natl Acad Sci U S A 74:3171–3175

    Article  CAS  Google Scholar 

  2. Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell 12:1–8

    Article  CAS  Google Scholar 

  3. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  Google Scholar 

  4. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  Google Scholar 

  5. Sun W, You X, Gogol-Döring A, He H, Kise Y, Sohn M, Chen T, Klebes A, Schmucker D, Chen W (2013) Ultra-deep profiling of alternatively spliced Drosophila Dscam isoforms by circularization-assisted multi-segment sequencing. EMBO J 32:2029–2038

    Article  CAS  Google Scholar 

  6. Treutlein B, Gokce O, Quake SR, Südhof TC (2014) Cartography of neurexin alternative splicing mapped by single-molecule long-read MRNA sequencing. Proc Natl Acad Sci U S A 111:E1291–E1299

    Article  CAS  Google Scholar 

  7. Schreiner D, Nguyen T-M, Russo G, Heber S, Patrignani A, Ahrné E, Scheiffele P (2014) Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins. Neuron 84:386–398

    Article  CAS  Google Scholar 

  8. Clark MB, Wrzesinski T, Garcia AB, Hall NAL, Kleinman JE, Hyde T, Weinberger DR, Harrison PJ, Haerty W, Tunbridge EM (2020) Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry 25:37–47

    Article  CAS  Google Scholar 

  9. Ray TA, Cochran K, Kozlowski C, Wang J, Alexander G, Cady MA, Spencer WJ, Ruzycki PA, Clark BS, Laeremans A et al (2020) Comprehensive identification of MRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease. Nat Commun 11:3328

    Article  CAS  Google Scholar 

  10. Bolisetty MT, Rajadinakaran G, Graveley BR (2015) Determining exon connectivity in complex MRNAs by nanopore sequencing. Genome Biol 16:204

    Article  Google Scholar 

  11. Sahlin K, Medvedev P (2020) De novo clustering of long-read transcriptome data using a greedy, quality value-based algorithm. J Comput Biol 27:472–484

    Article  CAS  Google Scholar 

  12. Tang AD, Soulette CM, van Baren MJ, Hart K, Hrabeta-Robinson E, Wu CJ, Brooks AN (2020) Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat Commun 11:1438

    Article  CAS  Google Scholar 

  13. Al Kadi M, Jung N, Ito S, Kameoka S, Hishida T, Motooka D, Nakamura S, Iida T, Okuzaki D (2020) UNAGI: an automated pipeline for nanopore full-length CDNA sequencing uncovers novel transcripts and isoforms in yeast. Funct Integr Genomics 20:523–536

    Article  Google Scholar 

  14. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  Google Scholar 

  15. Wick RR, Judd LM, Holt KE (2018) Deepbinner: demultiplexing barcoded Oxford nanopore reads with deep convolutional neural networks. PLoS Comput Biol 14:e1006583

    Article  Google Scholar 

  16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-Seq aligner. Bioinforma Oxf Engl 29:15–21

    Article  CAS  Google Scholar 

  17. Shabardina V, Kischka T, Manske F, Grundmann N, Frith MC, Suzuki Y, Makałowski W (2019) NanoPipe-a web server for nanopore MinION sequencing data analysis. GigaScience 8:giy169

    Article  Google Scholar 

  18. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma Oxf Engl 26:841–842

    Article  CAS  Google Scholar 

  19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  Google Scholar 

  20. Slater GSC, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31

    Article  Google Scholar 

Download references

Acknowledgments

We thank Svetlana Dokudovskaya for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Allemand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Allemand, E., Ango, F. (2022). Analysis of Splicing Regulation by Third-Generation Sequencing. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation