Phytobiome Metabarcoding: A Tool to Help Identify Prokaryotic and Eukaryotic Causal Agents of Undiagnosed Tree Diseases

  • Protocol
  • First Online:
Plant Pathology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2536))

Abstract

Recent advancements in high-throughput sequencing have provided scientists with vastly enhanced tools to diagnose unknown tree diseases. One of these techniques is referred to as metabarcoding, which uses phylogenetically informative reference genes to taxonomically classify short DNA sequences amplified from environmental samples. Using metabarcoding, we are able to compare the microbiota of symptomatic and asymptomatic (including presumably naïve) samples and identify microbe(s) that are only present in symptomatic samples and could therefore be responsible for the undiagnosed disease. Metabarcoding involves two main steps: library preparation and bioinformatic processing. For library preparation, the appropriate reference gene for the organism of interest (i.e., bacteria, phytoplasma, fungi, or other eukaryotes, such as nematodes) is amplified from the DNA extracted from the environmental samples using PCR and prepared for sequencing. The bioinformatic processing includes four major steps: (1) quality check and cleanup on raw reads; (2) classification of the sequences into taxonomically informative groups (ASVs or OTUs); (3) taxonomy assignments based on the reference database; and (4) differential abundance and diversity analyses to identify microbes that are significantly associated with just symptomatic samples and that point toward the putative causal agent of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelfattah A, Malacrinò A, Wisniewski M et al (2018) Metabarcoding: a powerful tool to investigate microbial communities and shape future plant protection strategies. Biol Control 120:1–10

    Article  Google Scholar 

  2. Roman-Reyna V, Dupas E, Cesbron S et al (2021) Metagenomic sequencing for rapid identification of Xylella fastidiosa from leaf samples. bioRxiv 6:e0059121

    Google Scholar 

  3. Deiner K, Bik HM, Elvira M et al (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26(21):5872–5895

    Article  Google Scholar 

  4. O’Brien HE, Parrent JL, Jackson JA et al (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71(9):5544–5550

    Article  Google Scholar 

  5. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45(9):2761

    Article  CAS  Google Scholar 

  6. Hadziavdic K, Lekang K, Lanzen A et al (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9(2):e87624

    Article  Google Scholar 

  7. Prewitt ML, Diehl SV, Mcelroy TC et al (2008) Comparison of general fungal and basidiomycete-specific ITS primers for identification of wood decay fungi. For Prod J 58(4):66–71

    CAS  Google Scholar 

  8. Ewing CJ, Slot J, Benitez Ponce M-S et al (2021) The foliar microbiome suggests fungal and bacterial agents may be involved in the beech leaf disease pathosystem. Phytobiomes J. (in press)

    Google Scholar 

  9. Creer S, Deiner K, Frey S et al (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7(9):1008–1018

    Article  Google Scholar 

  10. Nilsson RH, Anslan S, Bahram M et al (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17(2):95–109

    Article  CAS  Google Scholar 

  11. Pollock J, Glendinning L, Wisedchanwet T et al (2018) The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 84(7):e02627

    Article  Google Scholar 

  12. Zinger L, Bonin A, Alsos IG et al (2019) DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions. Mol Ecol 28(8):1857–1862

    Article  Google Scholar 

  13. Horton MW, Bodenhausen N, Beilsmith K et al (2015) Genome-wide association study of Arabidopsis thaliana’s leaf microbial community. Nat Commun 5:5320

    Article  Google Scholar 

  14. Gundersen DE, Lee I-M (1996) Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35(3):144–151

    CAS  Google Scholar 

  15. Gibb KS, Padovan AC, Mogen BD (1995) Studies on sweet potato little-leaf phytoplasma detected in sweet potato and other plant species growing in northern Australia. Phytopathology 85(2):169–174

    Article  Google Scholar 

  16. Usyk M, Zolnik CP, Patel H et al (2017) Novel ITS1 fungal primers for characterization of the mycobiome. mSphere 2(6):e00488

    Google Scholar 

  17. Sapkota R, Nicolaisen M (2015) High-throughput sequencing of nematode communities from total soil DNA extractions. BioMed Cent Ecol 15:3

    Google Scholar 

  18. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  Google Scholar 

  19. R Core Team (2017) R: a language and environment for statistical computing, Vienna

    Google Scholar 

  20. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  Google Scholar 

  21. Paradis E, Schliep K (2018) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  Google Scholar 

  22. de Mendiburu F (2020) agricolae: statistical procedures for agricultural research. R package version 1.3-3

    Google Scholar 

  23. Foster Z, Sharpton T, Grünwald N (2017) Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol 13(2):1–15

    Article  Google Scholar 

  24. Love MI, Huber W, Anders S (2014) Moderation estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  25. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  Google Scholar 

  26. Oksanen J, Blanchet FG, Friendly M et al (2020) vegan: Community ecology package. R package version 2.5-7

    Google Scholar 

  27. Lenth R (2021) emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.5-1

    Google Scholar 

  28. Bates D, Maechler M, Bolker B et al (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  29. Beckers B, Op BM, De TS et al (2016) Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front Microbiol 7:650

    Article  Google Scholar 

  30. White TJ, Bruns T, Lee SB et al (1990) Amplification and direct sequencing for fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and amplifications. Academic Press, Inc, San Diego, pp 315–322

    Google Scholar 

  31. Ramakodi MP (2021) Effect of amplicon sequencing depth in environmental microbiome research. Curr Microbiol 78(3):1026–1033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Afaq M. Mohamed Niyas and Caterina Villari from University of Georgia for providing the modified 16S phytoplasma PCR protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie J. Fearer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fearer, C.J., Malacrinò, A., Rosa, C., Bonello, P. (2022). Phytobiome Metabarcoding: A Tool to Help Identify Prokaryotic and Eukaryotic Causal Agents of Undiagnosed Tree Diseases. In: Luchi, N. (eds) Plant Pathology. Methods in Molecular Biology, vol 2536. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2517-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2517-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2516-3

  • Online ISBN: 978-1-0716-2517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation