Quantifying Regulated Mitochondrial Fission in Macrophages

  • Protocol
  • First Online:
Effector-Triggered Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2523))

Abstract

Mitochondria have co-evolved with eukaryotic cells for more than a billion years, becoming an important cog in their machinery. They are best known for being tasked with energy generation through the production of adenosine triphosphate, but they also have roles in several other cellular processes, for example, immune and inflammatory responses. Mitochondria have important functions in macrophages, key innate immune cells that detect pathogens and drive inflammation. Mitochondrial activity is influenced by the highly dynamic nature of the mitochondrial network, which alternates between interconnected tubular and fragmented forms. The dynamic balance between this interconnected fused network and fission-mediated mitochondrial fragmentation modulates inflammatory responses such as production of cytokines and mitochondrial reactive oxygen species. Here we describe methods to differentiate mouse bone marrow cells into macrophages and the use of light microscopy, electron microscopy, flow cytometry, and Western blotting to quantify regulated mitochondrial dynamics in these differentiated macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461. https://doi.org/10.3389/fimmu.2014.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stocks CJ, Schembri MA, Sweet MJ, Kapetanovic R (2018) For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. J Leukoc Biol 103(1):35–51. https://doi.org/10.1002/JLB.4RI0917-358R

    Article  CAS  PubMed  Google Scholar 

  3. Satoh T, Akira S (2016) Toll-Like Receptor signaling and its inducible proteins. Microbiol Spectrum 4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016

  4. Schroder K, Irvine KM, Taylor MS, Bokil NJ, Le Cao KA, Masterman KA et al (2012) Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci U S A 109(16):E944–E953. https://doi.org/10.1073/pnas.1110156109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perkins DJ, Patel MC, Blanco JC, Vogel SN (2016) Epigenetic mechanisms governing innate inflammatory responses. J Interf Cytokine Res 36(7):454–461. https://doi.org/10.1089/jir.2016.0003

    Article  CAS  Google Scholar 

  6. Palsson-McDermott EM, O'Neill LA (2013) The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays: news and reviews in molecular, cellular and developmental biology 35(11):965–973. https://doi.org/10.1002/bies.201300084

    Article  CAS  Google Scholar 

  7. O'Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213(1):15–23. https://doi.org/10.1084/jem.20151570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476–480. https://doi.org/10.1038/nature09973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banoth B, Cassel SL (2018) Mitochondria in innate immune signaling. Transl Res J Lab Clin Med 202:52–68. https://doi.org/10.1016/j.trsl.2018.07.014

    Article  CAS  Google Scholar 

  10. Roger AJ, Munoz-Gomez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Current Biol 27(21):R1177–R1R92. https://doi.org/10.1016/j.cub.2017.09.015

    Article  CAS  Google Scholar 

  11. Popov LD (2020) Mitochondrial biogenesis: an update. J Cell Mol Med 24(9):4892–4899. https://doi.org/10.1111/jcmm.15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14. https://doi.org/10.1038/nrm3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eiyama A, Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33:95–101. https://doi.org/10.1016/j.ceb.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  14. Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21(4):204–224. https://doi.org/10.1038/s41580-020-0210-7

    Article  CAS  PubMed  Google Scholar 

  15. Lee JY, Kapur M, Li M, Choi MC, Choi S, Kim HJ et al (2014) MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J Cell Sci 127(Pt 22):4954–4963. https://doi.org/10.1242/jcs.157321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201:34–39. https://doi.org/10.1111/j.1749-6632.2010.05629.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park S, Won JH, Hwang I, Hong S, Lee HK, Yu JW (2015) Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci Rep 5:15489. https://doi.org/10.1038/srep15489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katoh M, Wu B, Nguyen HB, Thai TQ, Yamasaki R, Lu H et al (2017) Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. Sci Rep 7(1):4942. https://doi.org/10.1038/s41598-017-05232-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C et al (2019) Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 67(6):1047–1061. https://doi.org/10.1002/glia.23587

    Article  PubMed  Google Scholar 

  20. Gao F, Reynolds MB, Passalacqua KD, Sexton JZ, Abuaita BH, O'Riordan MXD (2020) The mitochondrial fission regulator DRP1 controls post-transcriptional regulation of TNF-alpha. Front Cell Infect Microbiol 10:593805. https://doi.org/10.3389/fcimb.2020.593805

    Article  PubMed  Google Scholar 

  21. Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ et al (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127(2):221–232. https://doi.org/10.1111/jnc.12361

    Article  CAS  PubMed  Google Scholar 

  22. Kapetanovic R, Afroz SF, Ramnath D, Lawrence GM, Okada T, Curson JE et al (2020) Lipopolysaccharide promotes Drp1-dependent mitochondrial fission and associated inflammatory responses in macrophages. Immunol Cell Biol 98(7):528–539. https://doi.org/10.1111/imcb.12363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE et al (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2):457–70 e13. https://doi.org/10.1016/j.cell.2016.08.064

    Article  CAS  Google Scholar 

  24. Zhang L, Gan X, He Y, Zhu Z, Zhu J, Yu H (2017) Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species. PLoS One 12(4):e0175262. https://doi.org/10.1371/journal.pone.0175262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration. J Clin Invest 123(12):5371–5388. https://doi.org/10.1172/JCI70911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hung CH, Cheng SS, Cheung YT, Wuwongse S, Zhang NQ, Ho YS et al (2018) A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration. Redox Biol 14:7–19. https://doi.org/10.1016/j.redox.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  27. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  28. **ao X, Sankaranarayanan K, Khosla C (2017) Biosynthesis and structure-activity relationships of the lipid a family of glycolipids. Curr Opin Chem Biol 40:127–137. https://doi.org/10.1016/j.cbpa.2017.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165(2):618–622. https://doi.org/10.4049/jimmunol.165.2.618

    Article  CAS  PubMed  Google Scholar 

  30. Manczak M, Kandimalla R, Yin X, Reddy PH (2019) Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet 28(2):177–199. https://doi.org/10.1093/hmg/ddy335

    Article  CAS  PubMed  Google Scholar 

  31. Wang D, Wang J, Bonamy GM, Meeusen S, Brusch RG, Turk C et al (2012) A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem Int Ed Engl 51(37):9302–9305. https://doi.org/10.1002/anie.201204589

    Article  CAS  PubMed  Google Scholar 

  32. Smith G, Gallo G (2017) To mdivi-1 or not to mdivi-1: is that the question? Dev Neurobiol 77(11):1260–1268. https://doi.org/10.1002/dneu.22519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119(3):315–326. https://doi.org/10.1016/j.acthis.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  34. Bosch A, Calvo M (2019) Automated quantitative analysis of mitochondrial morphology. Methods Mol Biol 2040:99–115. https://doi.org/10.1007/978-1-4939-9686-5_6

    Article  CAS  PubMed  Google Scholar 

  35. Graham L, Orenstein JM (2007) Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nat Protoc 2(10):2439–2450. https://doi.org/10.1038/nprot.2007.304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568. https://doi.org/10.1038/nature15695

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Li L, Yang Y, Hong B, Chen X, **e Q et al (2020) Automatic reconstruction of mitochondria and endoplasmic reticulum in electron microscopy volumes by deep learning. Front Neurosci 14:599. https://doi.org/10.3389/fnins.2020.00599

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li R, Zeng X, Sigmund SE, Lin R, Zhou B, Liu C et al (2019) Automatic localization and identification of mitochondria in cellular electron cryo-tomography using faster-RCNN. BMC Bioinform 20(Suppl 3):132. https://doi.org/10.1186/s12859-019-2650-7

    Article  CAS  Google Scholar 

  39. Adaniya SM, J OU, Cypress MW, Kusakari Y, Jhun BS (2019) Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 316(5):C583–C604. https://doi.org/10.1152/ajpcell.00523.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shekhova E (2020) Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog 16(5):e1008470. https://doi.org/10.1371/journal.ppat.1008470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jezek J, Cooper KF, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 7(1). https://doi.org/10.3390/antiox7010013

  42. Waters LR, Ahsan FM, Wolf DM, Shirihai O, Teitell MA (2018) Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5:99–109. https://doi.org/10.1016/j.isci.2018.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun X, Lee W, Vaghjiani V, St John JC (2016) Analysis of mitochondrial DNA copy number and its regulation through DNA methylation of POLGA. Methods Mol Biol 1351:131–141. https://doi.org/10.1007/978-1-4939-3040-1_10

    Article  CAS  PubMed  Google Scholar 

  44. Pickles S, Vigie P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28(4):R170–RR85. https://doi.org/10.1016/j.cub.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu J, Dagda RK, Chu CT (2011) Monitoring mitophagy in neuronal cell cultures. Methods Mol Biol 793:325–339. https://doi.org/10.1007/978-1-61779-328-8_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mauro-Lizcano M, Esteban-Martinez L, Seco E, Serrano-Puebla A, Garcia-Ledo L, Figueiredo-Pereira C et al (2015) New method to assess mitophagy flux by flow cytometry. Autophagy 11(5):833–843. https://doi.org/10.1080/15548627.2015.1034403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gibon E, Loi F, Cordova LA, Pajarinen J, Lin T, Lu L et al (2016) Aging affects bone marrow macrophage polarization: relevance to bone healing. Regen Eng Transl Med 2(2):98–104. https://doi.org/10.1007/s40883-016-0016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RK received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 894690, a Rebecca L. Cooper grant (#021765). MJS is an NHMRC Leadership Fellow, supported by an NHMRC Investigator Grant (APP1194406) and an NHMRC project grant (APP1125316). SFA is supported by an Australian Government Research Training Program (RTP) Scholarship. NDC is supported as a CZI Imaging Scientist by grant number 2020-225648 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. Microscopy was performed at the Australian Cancer Research Foundation (ACRF)/Institute for Molecular Bioscience Cancer Biology Imaging. We thank Professor Robert Parton for insightful discussions around best practice for electron microscopy imaging and analysis.

figure a

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew J. Sweet or Ronan Kapetanovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Afroz, S.F., Condon, N.D., Sweet, M.J., Kapetanovic, R. (2022). Quantifying Regulated Mitochondrial Fission in Macrophages. In: Kufer, T.A., Kaparakis-Liaskos, M. (eds) Effector-Triggered Immunity. Methods in Molecular Biology, vol 2523. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2449-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2449-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2448-7

  • Online ISBN: 978-1-0716-2449-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation