A Brief Introduction to Effector-Triggered Immunity

  • Protocol
  • First Online:
Effector-Triggered Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2523))

  • 1039 Accesses

Abstract

Detection of microbes by the host is essential to restrict microbial colonization, to clear pathogens, and to mount adapted defense reactions, and thus is the key function of the innate immune systems of plants and mammals. Here we provide an introduction into pathogen recognition by the innate immune system of both plants and animals. We will particularly focus on the concept of effector-triggered immunity, and similarities and differences in its function between plants and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  Google Scholar 

  2. Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97. https://doi.org/10.1034/j.1600-065x.2000.917309.x

    Article  CAS  PubMed  Google Scholar 

  3. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015

    Article  CAS  PubMed  Google Scholar 

  4. Patel S (2018) Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation. Curr Allergy Asthma Rep 18(11):63. https://doi.org/10.1007/s11882-018-0817-3

    Article  CAS  PubMed  Google Scholar 

  5. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16(9):537–552. https://doi.org/10.1038/nri.2016.77

    Article  CAS  PubMed  Google Scholar 

  6. Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354(6316):aaf6395. https://doi.org/10.1126/science.aaf6395

    Article  CAS  PubMed  Google Scholar 

  7. van Wersch S, Tian L, Hoy R, Li X (2020) Plant NLRs: the whistleblowers of plant immunity. Plant Commun 1(1):100016. https://doi.org/10.1016/j.xplc.2019.100016

    Article  PubMed  Google Scholar 

  8. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268(5211):661–667. https://doi.org/10.1126/science.7732374

    Article  CAS  PubMed  Google Scholar 

  9. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  10. Yuan M, Ngou BPM, Ding P, **n XF (2021) PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol 62:102030. https://doi.org/10.1016/j.pbi.2021.102030

    Article  CAS  PubMed  Google Scholar 

  11. Kufer TA, Creagh EM, Bryant CE (2019) Guardians of the cell: effector-triggered immunity steers mammalian immune defense. Trends Immunol 40(10):939–951. https://doi.org/10.1016/j.it.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  12. Lopes Fischer N, Naseer N, Shin S, Brodsky IE (2020) Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol 5(1):14–26. https://doi.org/10.1038/s41564-019-0623-2

    Article  CAS  PubMed  Google Scholar 

  13. Kufer TA, Fritz JH, Philpott DJ (2005) NACHT-LRR proteins (NLRs) in bacterial infection and immunity. Trends Microbiol 13(8):381–388. https://doi.org/10.1016/j.tim.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  14. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833. https://doi.org/10.1038/35081161

    Article  CAS  PubMed  Google Scholar 

  15. van der Hoorn RA, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20(8):2009–2017. https://doi.org/10.1105/tpc.108.060194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wani SH, Anand S, Singh B, Bohra A, Joshi R (2021) WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep 40(7):1071–1085. https://doi.org/10.1007/s00299-021-02691-8

    Article  CAS  PubMed  Google Scholar 

  17. Saur IML, Panstruga R, Schulze-Lefert P (2021) NOD-like receptor-mediated plant immunity: from structure to cell death. Nat Rev Immunol 21(5):305–318. https://doi.org/10.1038/s41577-020-00473-z

    Article  CAS  PubMed  Google Scholar 

  18. Stuart LM, Paquette N, Boyer L (2013) Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat Rev Immunol 13(3):199–206. https://doi.org/10.1038/nri3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liston A, Masters SL (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 17(3):208–214. https://doi.org/10.1038/nri.2016.151

    Article  CAS  PubMed  Google Scholar 

  20. Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A (2020) Molecular mechanisms of salmonella effector proteins: a comprehensive review. Infect Drug Resist 13:11–26. https://doi.org/10.2147/IDR.S230604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9(7):487–498. https://doi.org/10.1038/nrmicro2592

    Article  CAS  PubMed  Google Scholar 

  22. Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ (2020) Modification of the host ubiquitome by bacterial enzymes. Microbiol Res 235:126429. https://doi.org/10.1016/j.micres.2020.126429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grishin AM, Beyrakhova KA, Cygler M (2015) Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 24(5):604–620. https://doi.org/10.1002/pro.2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brodsky IE, Medzhitov R (2009) Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11(5):521–526. https://doi.org/10.1038/ncb0509-521

    Article  CAS  PubMed  Google Scholar 

  25. Chambers KA, Scheck RA (2020) Bacterial virulence mediated by orthogonal post-translational modification. Nat Chem Biol 16(10):1043–1051. https://doi.org/10.1038/s41589-020-0638-2

    Article  CAS  PubMed  Google Scholar 

  26. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  27. Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8(3):e1002638. https://doi.org/10.1371/journal.ppat.1002638

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chavarria-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9(6):e1003452. https://doi.org/10.1371/journal.ppat.1003452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR, Johnson DC, Ball DP, Taabazuing CY, Orth EL, Vittimberga BA, Bachovchin DA (2019) N-terminal degradation activates the NLRP1B inflammasome. Science 364(6435):82–85. https://doi.org/10.1126/science.aau1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364(6435):eaau1330. https://doi.org/10.1126/science.aau1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pei G, Zyla J, He L, Moura-Alves P, Steinle H, Saikali P, Lozza L, Nieuwenhuizen N, Weiner J, Mollenkopf HJ, Ellwanger K, Arnold C, Duan M, Dagil Y, Pashenkov M, Boneca IG, Kufer TA, Dorhoi A, Kaufmann SH (2021) Cellular stress promotes NOD1/2-dependent inflammation via the endogenous metabolite sphingosine-1-phosphate. EMBO J 40(13):e106272. https://doi.org/10.15252/embj.2020106272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jamilloux Y, Magnotti F, Belot A, Henry T (2018) The pyrin inflammasome: from sensing RhoA GTPases-inhibiting toxins to triggering autoinflammatory syndromes. Pathog Dis 76(3):fty020. https://doi.org/10.1093/femspd/fty020

    Article  CAS  Google Scholar 

  33. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S, Seki E, Schnabl B, Hevener AL, Greenberg HB, Kisseleva T, Karin M (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560(7717):198–203. https://doi.org/10.1038/s41586-018-0372-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  35. Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17(8):914–921. https://doi.org/10.1038/ni.3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keestra AM, Winter MG, Auburger JJ, Frassle SP, Xavier MN, Winter SE, Kim A, Poon V, Ravesloot MM, Waldenmaier JF, Tsolis RM, Eigenheer RA, Baumler AJ (2013) Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496(7444):233–237. https://doi.org/10.1038/nature12025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kufer TA, Kremmer E, Adam AC, Philpott DJ, Sansonetti PJ (2008) The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol 10(2):477–486. https://doi.org/10.1111/j.1462-5822.2007.01062.x

    Article  CAS  PubMed  Google Scholar 

  38. Bielig H, Lautz K, Braun PR, Menning M, Machuy N, Bruegmann C, Barisic S, Eisler SA, Andreel M, Zurek B, Kashkar H, Sansonetti PJ, Hausser A, Meyer TF, Kufer TA (2014) The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling. PLoS Pathog 10(9):e1004351. https://doi.org/10.1371/journal.ppat.1004351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Legrand-Poels S, Kustermans G, Bex F, Kremmer E, Kufer TA, Piette J (2007) Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J Cell Sci 120(Pt 7):1299–1310. https://doi.org/10.1242/jcs.03424

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues L, Graca RSF, Carneiro LAM (2018) Integrated stress responses to bacterial pathogenesis patterns. Front Immunol 9:1306. https://doi.org/10.3389/fimmu.2018.01306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11(6):389–402. https://doi.org/10.1038/nri2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12(9):818–826. https://doi.org/10.1038/ni.2083

    Article  CAS  Google Scholar 

  43. Urbach JM, Ausubel FM (2017) The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci U S A 114(5):1063–1068. https://doi.org/10.1073/pnas.1619730114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang X, Mao Y, Wu H (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350(6259):404–409. https://doi.org/10.1126/science.aac5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J (2019) Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364(6435):eaav5870. https://doi.org/10.1126/science.aav5870

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Kufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kufer, T.A., Kaparakis-Liaskos, M. (2022). A Brief Introduction to Effector-Triggered Immunity. In: Kufer, T.A., Kaparakis-Liaskos, M. (eds) Effector-Triggered Immunity. Methods in Molecular Biology, vol 2523. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2449-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2449-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2448-7

  • Online ISBN: 978-1-0716-2449-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation