Hi-C Analysis to Identify Genome-Wide Chromatin Structural Aberration in Cancer

  • Protocol
  • First Online:
Chromosome Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2519))

  • 1549 Accesses

Abstract

Hi-C is a method that analyzes genome-wide chromatin structure using next-generation sequencer. Chromatin structure is crucial for regulating transcription or replication, and Hi-C has revealed the hierarchical chromatin structures, such as loop, domain , and compartment structures. Aberrant alteration of these structures causes disease, and a number of structural aberrations in cancer cells have been reported recently. Besides, Hi-C can identify chromosome rearrangements that frequently occurred in cancer. Therefore, Hi-C is a powerful technique to analyze epigenomic and genomic aberrations in tumorigenesis. Here we will introduce the basic protocol of Hi-C in experimental and analytical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O'Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S (2017) The 4D nucleome project. Nature 549(7671):219–226. https://doi.org/10.1038/nature23884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. https://doi.org/10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38(11):1341–1347. https://doi.org/10.1038/ng1891

    Article  CAS  PubMed  Google Scholar 

  4. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64. https://doi.org/10.1038/nature08497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mumbach MR, Satpathy AT, Boyle EA, Dai C, Gowen BG, Cho SW, Nguyen ML, Rubin AJ, Granja JM, Kazane KR, Wei Y, Nguyen T, Greenside PG, Corces MR, Tycko J, Simeonov DR, Suliman N, Li R, Xu J, Flynn RA, Kundaje A, Khavari PA, Marson A, Corn JE, Quertermous T, Greenleaf WJ, Chang HY (2017) Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat Genet 49(11):1602–1612. https://doi.org/10.1038/ng.3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive map** of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385. https://doi.org/10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17(12):772. https://doi.org/10.1038/nrg.2016.147

    Article  CAS  PubMed  Google Scholar 

  10. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49(5):773–782. https://doi.org/10.1016/j.molcel.2013.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okabe A, Huang KK, Matsusaka K, Fukuyo M, **ng M, Ong X, Hoshii T, Usui G, Seki M, Mano Y, Rahmutulla B, Kanda T, Suzuki T, Rha SY, Ushiku T, Fukayama M, Tan P, Kaneda A (2020) Cross-species chromatin interactions drive transcriptional rewiring in Epstein-Barr virus-positive gastric adenocarcinoma. Nat Genet 52(9):919–930. https://doi.org/10.1038/s41588-020-0665-7

    Article  CAS  PubMed  Google Scholar 

  12. Flavahan WA, Drier Y, Johnstone SE, Hemming ML, Tarjan DR, Hegazi E, Shareef SJ, Javed NM, Raut CP, Eschle BK, Gokhale PC, Hornick JL, Sicinska ET, Demetri GD, Bernstein BE (2019) Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575(7781):229–233. https://doi.org/10.1038/s41586-019-1668-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114. https://doi.org/10.1038/nature16490

    Article  CAS  PubMed  Google Scholar 

  14. Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, Lazaris C, Chen X, Hu H, Bakogianni S, Wang J, Fu Y, Boccalatte F, Zhong H, Paietta E, Trimarchi T, Zhu Y, Van Vlierberghe P, Inghirami GG, Lionnet T, Aifantis I, Tsirigos A (2020) Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 52(4):388–400. https://doi.org/10.1038/s41588-020-0602-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yusufova N, Kloetgen A, Teater M, Osunsade A, Camarillo JM, Chin CR, Doane AS, Venters BJ, Portillo-Ledesma S, Conway J, Phillip JM, Elemento O, Scott DW, Béguelin W, Licht JD, Kelleher NL, Staudt LM, Skoultchi AI, Keogh MC, Apostolou E, Mason CE, Imielinski M, Schlick T, David Y, Tsirigos A, Allis CD, Soshnev AA, Cesarman E, Melnick AM (2021) Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589(7841):299–305. https://doi.org/10.1038/s41586-020-3017-y

    Article  CAS  PubMed  Google Scholar 

  16. Johnstone SE, Reyes A, Qi Y, Adriaens C, Hegazi E, Pelka K, Chen JH, Zou LS, Drier Y, Hecht V, Shoresh N, Selig MK, Lareau CA, Iyer S, Nguyen SC, Joyce EF, Hacohen N, Irizarry RA, Zhang B, Aryee MJ, Bernstein BE (2020) Large-scale topological changes restrain malignant progression in colorectal cancer. Cell 182(6):1474–1489.e1423. https://doi.org/10.1016/j.cell.2020.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akdemir KC, Le VT, Chandran S, Li Y, Verhaak RG, Beroukhim R, Campbell PJ, Chin L, Dixon JR, Futreal PA (2020) Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat Genet 52(3):294–305. https://doi.org/10.1038/s41588-019-0564-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP, Fraser P (2017) Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol 18(1):125. https://doi.org/10.1186/s13059-017-1253-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dixon JR, Xu J, Dileep V, Zhan Y, Song F, Le VT, Yardımcı GG, Chakraborty A, Bann DV, Wang Y, Clark R, Zhang L, Yang H, Liu T, Iyyanki S, An L, Pool C, Sasaki T, Rivera-Mulia JC, Ozadam H, Lajoie BR, Kaul R, Buckley M, Lee K, Diegel M, Pezic D, Ernst C, Hadjur S, Odom DT, Stamatoyannopoulos JA, Broach JR, Hardison RC, Ay F, Noble WS, Dekker J, Gilbert DM, Yue F (2018) Integrative detection and analysis of structural variation in cancer genomes. Nat Genet 50(10):1388–1398. https://doi.org/10.1038/s41588-018-0195-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, Chen Q, Tang D, Yu Y, Li C (2017) 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun 8(1):1937. https://doi.org/10.1038/s41467-017-01793-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belaghzal H, Dekker J, Gibcus JH (2017) Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide map** of chromosome conformation. Methods 123:56–65. https://doi.org/10.1016/j.ymeth.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin loo**. Cell 159(7):1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagano T, Várnai C, Schoenfelder S, Javierre BM, Wingett SW, Fraser P (2015) Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol 16(1):175. https://doi.org/10.1186/s13059-015-0753-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lajoie BR, Dekker J, Kaplan N (2015) The Hitchhiker's guide to Hi-C analysis: practical guidelines. Methods 72:65–75. https://doi.org/10.1016/j.ymeth.2014.10.031

    Article  CAS  PubMed  Google Scholar 

  25. Ay F, Noble WS (2015) Analysis methods for studying the 3D architecture of the genome. Genome Biol 16:183. https://doi.org/10.1186/s13059-015-0745-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, Heard E, Dekker J, Barillot E (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259. https://doi.org/10.1186/s13059-015-0831-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL (2016) Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Syst 3(1):95–98. https://doi.org/10.1016/j.cels.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL (2016) Juicebox provides a visualization system for hi-C contact maps with unlimited zoom. Cell Syst 3(1):99–101. https://doi.org/10.1016/j.cels.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, Luber JM, Ouellette SB, Azhir A, Kumar N, Hwang J, Lee S, Alver BH, Pfister H, Mirny LA, Park PJ, Gehlenborg N (2018) HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol 19(1):125. https://doi.org/10.1186/s13059-018-1486-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou X, Lowdon RF, Li D, Lawson HA, Madden PA, Costello JF, Wang T (2013) Exploring long-range genome interactions using the WashU Epigenome Browser. Nat Methods 10(5):375–376. https://doi.org/10.1038/nmeth.2440

    Article  CAS  PubMed  Google Scholar 

  31. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. https://doi.org/10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolff J, Bhardwaj V, Nothjunge S, Richard G, Renschler G, Gilsbach R, Manke T, Backofen R, Ramírez F, Grüning BA (2018) Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res 46(W1):W11–w16. https://doi.org/10.1093/nar/gky504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ay F, Bailey TL, Noble WS (2014) Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 24(6):999–1011. https://doi.org/10.1101/gr.160374.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang S, Lee S, Chu C, Jain D, Kerpedjiev P, Nelson GM, Walsh JM, Alver BH, Park PJ (2020) HiNT: a computational method for detecting copy number variations and translocations from Hi-C data. Genome Biol 21(1):73. https://doi.org/10.1186/s13059-020-01986-5

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu HJ, Michor F (2016) A computational strategy to adjust for copy number in tumor Hi-C data. Bioinformatics 32(24):3695–3701. https://doi.org/10.1093/bioinformatics/btw540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chakraborty A, Ay F (2018) Identification of copy number variations and translocations in cancer cells from Hi-C data. Bioinformatics 34(2):338–345. https://doi.org/10.1093/bioinformatics/btx664

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kaneda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okabe, A., Kaneda, A. (2023). Hi-C Analysis to Identify Genome-Wide Chromatin Structural Aberration in Cancer. In: Gotoh, E. (eds) Chromosome Analysis. Methods in Molecular Biology, vol 2519. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2433-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2433-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2432-6

  • Online ISBN: 978-1-0716-2433-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation