Nanofabrication of Catechin-Loaded Alginate, Pectin, and Chitosan Polymeric Nanoparticles

  • Protocol
  • First Online:
Tissue Scaffolds

Abstract

Drug delivery with appropriate dosage and interval at the target site by nanofabrication is the choice of research at present time. Use of polymers, viz., alginate, pectin, and chitosan, has been accepted by the European Pharmacopoeia as a newer process for structured drug delivery systems. Catechins, a predominant form of flavanols found naturally, have drawn particular consideration due to their relatively high antioxidant capacity in biological systems. The application of catechin is restricted because of its unstable nature in solution with reduced bioavailability in the body. Designing and nanofabrication not only decrease the repeated administration due to its sustained release properties to prevail over noncompliance but also facilitate the increase of the therapeutic value by reducing toxicity and escalating the bioavailability, stability, and target ability to the specific cell or organ. In this chapter, we have described nanofabrication of catechin-loaded alginate, pectin, and chitosan polymeric nanoparticles as a potent method to protect controlled release and to increase the action of bioactive compounds at the target cell or organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De S, Robinson D (2003) Polymer relationships during preparation of chitosan–alginate and poly-L-lysine–alginate nanospheres. J Control Release 89:101–112

    Article  Google Scholar 

  2. Motwani SK, Shruti C, Sushma T, Kanchan K, Farhan JA, Roop KK (2008) Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterization. Eur J Pharm Biopharm 68:513–525

    Google Scholar 

  3. Ratnam V, Ankola DD, Bhardwaj V, Sahana DK, Ravi KMNV (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207

    Article  Google Scholar 

  4. Tiyaboonchai W, Tungpradit W, Plianbangchang P (2007) Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm 337:299–306

    Article  Google Scholar 

  5. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Article  Google Scholar 

  6. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6(4):285–1309. https://doi.org/10.3390/ma6041285

    Article  Google Scholar 

  7. Yang CS (1999) Tea and health. Nutrition 15(11–12):946–949

    Google Scholar 

  8. Valcic S, Annette M, Neil EJ, Daniel CL, Barbara NT (1999) Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (−)-epigallocatechingallate with peroxylradicals. Chem Res Toxicol 12:382–386

    Article  Google Scholar 

  9. Jiang C, Jiao Y, Chen X, Li X, Yan W, Yu B, **ong Q (2013) Preliminary characterization and potential hepatoprotective effect of polysaccharides from Cipangopaludinachinensis. Food Chem Toxicol 59:18–25

    Article  Google Scholar 

  10. Zhang L, Kosaraju SL (2007) Biopolymeric delivery system for controlled release of polyphenolic antioxidants. Eur Polym J 43(7):2956–2966

    Article  Google Scholar 

  11. Ajazuddin SS (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81:680–689

    Article  Google Scholar 

  12. Sang S, Lee MJ, Hou Z, Ho CT, Yang CS (2005) Stability of tea polyphenol (−) epigallocatechin-3-gallate and formation of dimmers and epimers under common experimental conditions. J Agric Food Chem 53:9478–9484

    Article  Google Scholar 

  13. Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630

    Article  Google Scholar 

  14. Pan JL, Bao ZM, Li JL, Zhang LG, Wu C, Yu YT (2005) Chitosan-based scaffolds for hepatocyte culture. ASBM6: AdvBiomat 6:91–94

    Google Scholar 

  15. Reis CP, Ribeiro AJ, Neufeld RJ, Veiga F (2007) Alginate microparticles as novel carrier for oral insulin delivery. Biotechnol Bioeng 96(5):977–989

    Article  Google Scholar 

  16. Bonifácio BV, da Silva PB, dos Matheus Aparecido SR, Kamila M, Silveira N, Taís MB, Marlus C (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15

    Google Scholar 

  17. Ansari SH, Farha I, Sameem M (2012) Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res 3(3):140–146

    Article  Google Scholar 

  18. Deljoo S, Rabiee N, Rabiee M (2019) Curcumin-hybrid nanoparticles in drug delivery system (review). Asian J Nanosci Mater 2:66–91

    Google Scholar 

  19. Peppas B, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    Article  Google Scholar 

  20. Bhardwaj V, Hariharan S, Bala I, Lamprecht A, Kumar N, Panchagnula R, Kumar MNVR (2005) Pharmaceutical aspects of polymeric nanoparticles for oral delivery. J Biomed Nanotechnol 1:235–258

    Article  Google Scholar 

  21. Tibbals HF (2011) Medical nanotechnology and nanomedicine. CRC Press, Boca Raton, Florida, pp 75–116

    Google Scholar 

  22. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  Google Scholar 

  23. Jana S, Gandhi A, Sen KK, Basu SK (2011) Natural polymers and their application in drug delivery and biomedical field. J Pharm Sci Technol 1:16–27

    Google Scholar 

  24. Tabata Y, Ikada Y (1989) Synthesis of gelatin microspheres containing interferon. Pharm Res 6:422–427

    Article  Google Scholar 

  25. Onsøyen E (1996) Commercial applications of alginates. Carbohydr Eur 14:26–31

    Google Scholar 

  26. King AH (1983) In: Glicksman M (ed) In food hydrocolloids, vol 2. CRC Press, Boca Raton, pp 115–154

    Google Scholar 

  27. Soni MK, Kumar M, Namdeo KP (2010) Sodium alginate microspheres for extending drug release: formulation and in vitro evaluation. Int J Drug Deliv 2:64–68

    Article  Google Scholar 

  28. Das RK, Naresh K, Utpal B (2010) Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 6:153–160

    Article  Google Scholar 

  29. Zahoor A, Rajesh P, Sadhna S, Khuller GK (2006) Alginate nanoparticles as antituberculosisdrug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176

    Google Scholar 

  30. Spizzirri UG, Ortensia IP, Francesca I, Giuseppe C, Francesco P, Manuela C, Nevio P (2010) Antioxidant–polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydr Polym 79:333–340

    Article  Google Scholar 

  31. Wicker L, Kim Y, Kim MJ, Thirkield B, Lin Z, Jung J (2014) Pectin as a bioactive polysaccharide–extracting tailored function from less. Food Hydrocoll 42:251–259

    Article  Google Scholar 

  32. Muralikrishna G, Tharanathan RN (1994) Characterization of pectic polysaccharides from pulse husks. Food Chem 50(1):87–89

    Article  Google Scholar 

  33. Da Silva JL, Rao MA (2007) Rheological behavior of food gels. In: Rheology of fluid and semisolid foods. Springer US, pp 339–401

    Chapter  Google Scholar 

  34. Be Miller JN (1986) An introduction to pectin: structure and properties. In: Fishman ML, Jen JJ (eds) Chemistry andfunction of pectins, ACS symposium series 310. American Chemical Society, Washington, DC, pp 2–12

    Chapter  Google Scholar 

  35. Löfgren C, Hermansson AM (2007) Synergistic rheological behaviour of mixed hm/lm pectin gels. Food Hydrocoll 21(3):480–486

    Article  Google Scholar 

  36. Morris ER, Powell DA, Gidley MJ, Rees DA (1982) Conformations and interactions of pectins: I. polymorphism between gel and solid states of calcium polygalacturonate. J Mol Biol 155(4):507–516

    Article  Google Scholar 

  37. Sandberg AS, Ahderinne R, Andersson H, Hallgren B, Hultén L (1983) The effect of citrus pectin on the absorption of nutrients in the small intestine. Hum Nutr Clin Nutr 37(3):171–183

    Google Scholar 

  38. Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC (2002) The use of polysaccharides to target drugs to the colon. Carbohydr Polym 48(3):219–231

    Article  Google Scholar 

  39. Liu L, Fishman ML, Hicks KB (2007) Pectin in controlled drug delivery–a review. Cellulose 14(1):15–24

    Article  Google Scholar 

  40. Perera G, Barthelmes J, Bernkop-Schnürch A (2010) Novel pectin–4-aminothiophenole conjugate microparticles for colon-specific drug delivery. J Control Release 145(3):240–246

    Article  Google Scholar 

  41. Ugurlu T, Turkoglu M, Gurer US, Akarsu BG (2007) Colonic delivery of compression coated nisin tablets using pectin/HPMC polymer mixture. Eur J Pharm Biopharm 67:202–210

    Article  Google Scholar 

  42. Maestrelli F, Cirri M, Corti G, Mennini N, Mura P (2008) Development of enteric-coated calcium pectinate microspheres intended for colonic drug delivery. Eur J Pharm Biopharm 69:508–518

    Article  Google Scholar 

  43. Katav T, Liu L, Traitel T, Goldbart R, Wolfson M, Kost J (2008) Modified pectin-based carrier for gene delivery: cellular barriers in gene delivery course. J Control Release 130:183–191

    Article  Google Scholar 

  44. Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P (2008) Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin–liposome nanocomplexes. J Control Release 125(3):236–245

    Article  Google Scholar 

  45. Sharma R, Ahuja M, Kaur H (2012) Thiolated pectin nanoparticles: preparation, characterization and ex vivo corneal permeation study. Carbohydr Polym 87(2):1606–1610

    Article  Google Scholar 

  46. Verma AK, Chanchal A, Kumar A (2011) Potential of negatively charged pectin nanoparticles encapsulating paclitaxel: preparation and characterization. In: Nanoscience international conference on technology and societal implications, pp 1–8

    Google Scholar 

  47. Dutta RK, Sahu S (2012) Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Results Pharma Sci 2:38–45

    Article  Google Scholar 

  48. Yu CY, Wang YM, Li NM, Liu GS, Yang S, Tang GT, Wei H (2014) In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy. Mol Pharm 11(2):638–644

    Article  Google Scholar 

  49. Illum L (1998) Chitosan and its use as a pharmaceutical excipients. Pharm Res 15(9):1326–1331

    Article  Google Scholar 

  50. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430

    Article  Google Scholar 

  51. Li Q, Dunn ET, Grandmaison EW, Goosen MFA (1992) Applications and properties of chitosan. J Bioact Compat Polym 7:370–397

    Article  Google Scholar 

  52. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47(1):83–97

    Article  Google Scholar 

  53. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408

    Article  Google Scholar 

  54. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142

    Article  Google Scholar 

  55. Cheng K, Lim LY (2004) Insulin-loaded calcium pectinate nanoparticles: effects of pectin molecular weight and formulation in drug development. Ind Pharm 30(4):359–367

    Article  Google Scholar 

  56. Zou Y, Yang Y, Li J, Li W, Wu Q (2006) Prevention of hepatic injury by a traditional Chinese formulation, BJ-JN in mice treated with bacille-calmette-guerin and lipopolysaccharide. J Ethnopharmacol 107:442–448

    Article  Google Scholar 

  57. Altiok D, Altiok E, Tihminlioglu F (2010) J Mater Sci Mater Med 21:2227–2236

    Article  Google Scholar 

  58. Davies NM, Farr SJ, Hadgraft J, Kellaway IW (1992) Evaluation of mucoadhesive polymers in ocular drug delivery. II-Polymer-coated vesicles. Pharm Res 9(9):1137–1144

    Article  Google Scholar 

  59. Patel DP, Singh S (2015) Chitosan: a multifacet polymer. Int J Curr Pharm Res 7(2):21–28

    Google Scholar 

  60. Kotzé AF, Thanou MM, Luebetaen HL, De Boer AG, Verhoef JC, Junginger HE (1999) Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells. J Pharm Sci 88:253–257

    Article  Google Scholar 

  61. Wu JL, Chao QW, Ren XZ, Si XC (2014) Multi-drug delivery system based on alginate/calcium carbonatehybrid nanoparticles for combination chemotherapy. Colloid Surf B Biointerfaces 123:498–505

    Article  Google Scholar 

  62. Yu CY, Cao H, Zhang XC, Zhou FZ, Cheng SX, Zhang XZ, Zhuo RX (2009) Hybrid nanospheres and vesicles based on pectin as drug carriers. Langmuir 25(19):11720–11726

    Article  Google Scholar 

  63. Calvo P, Remunan-Lopez C, Vilas-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carrier for protein and vaccines. Pharm Res 14(10):1431–1436

    Article  Google Scholar 

  64. Liang HF, Yang TF, Huang CT, Chen MC, Sung HW (2005) Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release 105:213–225

    Article  Google Scholar 

  65. Dudhani AR, Kosaraju SL (2010) Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym 81:243

    Article  Google Scholar 

  66. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239(1):70–76

    Article  Google Scholar 

  67. Basnet P, Matsumoo T, Neidlein R (1997) Potent free radical scavenging activity of propolis isolated from Brazilian Propolis. Naturfors 52(11–12):828–833

    Article  Google Scholar 

  68. Ebrahimzadeh MA, Nabavi SM, Nabavi SF (2009) Correlation between the in vitro iron chelating activity and poly phenol and flavonoid contents of some medicinal plants. Pak J Biol Sci 12(12):934–938

    Article  Google Scholar 

  69. Sayah MY, Chabir R, Benyahia H, RodiKandri Y, OuazzaniChahdi F, Touzani H, Errachidi F (2016) Yield, esterification degree and molecular weight evaluation of pectins isolated from orange and grapefruit peels under different conditions. PLoS One 11(9):e0161751. https://doi.org/10.1371/journal.pone.0161751

    Article  Google Scholar 

  70. Sowjanya B, Prasanna RI, Devi KJ, Narayana S, Chetty CM, Purushothaman M, Gnanaprakash K (2010) Preparation and characterization of cefadroxil loaded alginate microbeads. Int J Res Pharm Sci 1(4):386–390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mondal, D.B., Velayudhan, J.M., Lekshman, A., Mandal, R.S.K., Raja, R., Kumar, N. (2022). Nanofabrication of Catechin-Loaded Alginate, Pectin, and Chitosan Polymeric Nanoparticles. In: Kumar, N., Kumar, V., Shrivastava, S., Gangwar, A.K., Saxena, S. (eds) Tissue Scaffolds. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2425-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2425-8_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2424-1

  • Online ISBN: 978-1-0716-2425-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation