Antibody-Based Affinity Capture Combined with LC-MS Analysis for Identification of COVID-19 Disease Serum Biomarkers

  • Protocol
  • First Online:
Multiplex Biomarker Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2511))

Abstract

Blood serum or plasma proteins are potentially useful in COVID-19 research as biomarkers for risk prediction, diagnosis, stratification, and treatment monitoring. However, serum protein-based biomarker identification and validation is complicated due to the wide concentration range of these proteins, which spans more than ten orders of magnitude. Here we present a combined affinity purification-liquid chromatography mass spectrometry approach which allows identification and quantitation of the most abundant serum proteins along with the nonspecifically bound and interaction proteins. This led to the reproducible identification of more than 100 proteins that were not specifically targeted by the affinity column. Many of these have already been implicated in COVID-19 disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.worldometers.info/coronavirus/

  2. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

  3. Öztürk R, Taşova Y, Ayaz A (2020) COVID-19: pathogenesis, genetic polymorphism, clinical features and laboratory findings. Turk. J Med Sci 50(SI-1):638–657

    Google Scholar 

  4. Rodríguez Y, Novelli L, Rojas M et al (2020) Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun 114:102506. https://doi.org/10.1016/j.jaut.2020.102506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vardhana SA, Wolchok JD (2020) The many faces of the anti-COVID immune response. J Exp Med 217(6):e20200678. https://doi.org/10.1084/jem.20200678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou Y, Zhang J, Wang D et al (2021) Profiling of the immune repertoire in COVID-19 patients with mild, severe, convalescent, or retesting-positive status. J Autoimmun 118:102596. https://doi.org/10.1016/j.jaut.2021.102596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hogan G, Geoghegan P, Carroll TP et al (2021) Alpha1-antitrypsin: key player or bystander in acute respiratory distress syndrome? Anesthesiology 134(5):792–808

    Article  CAS  Google Scholar 

  8. Gando S, Wada T (2021) Thromboplasminflammation in COVID-19 coagulopathy: three viewpoints for diagnostic and therapeutic strategies. Front Immunol 12:649122. https://doi.org/10.3389/fimmu.2021.649122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Semeraro N, Colucci M (2021) The Prothrombotic state associated with SARS-CoV-2 infection: pathophysiological aspects. Mediterr J Hematol Infect Dis 13(1):e2021045. https://doi.org/10.4084/MJHID.2021.045

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pascolo S (2021) Synthetic messenger RNA-based vaccines: from scorn to hype. Viruses 13(2):270. https://doi.org/10.3390/v13020270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koike H, Okumura T, Murohara T et al (2021) Multidisciplinary approaches for transthyretin amyloidosis. Cardiol Ther 4:1–23. https://doi.org/10.1007/s40119-021-00222-w. Online ahead of print

    Article  Google Scholar 

  12. Akbar MR, Pranata R, Wibowo A et al (2021) The association between serum prealbumin and poor outcome in COVID-19 - systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 25(10):3879–3885

    CAS  PubMed  Google Scholar 

  13. Liu K, Yang T, Peng XF et al (2021) A systematic meta-analysis of immune signatures in patients with COVID-19. Rev Med Virol 31(4):e2195. https://doi.org/10.1002/rmv.2195

    Article  CAS  PubMed  Google Scholar 

  14. Pang NY, Pang AS, Chow VT et al (2021) Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Mil Med Res 8(1):47. https://doi.org/10.1186/s40779-021-00342-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797

    Article  CAS  Google Scholar 

  16. Merle NS, Church SE, Fremeaux-Bacchi V et al (2015) Complement system part I—molecular mechanisms of activation and regulation. Front Immunol 6:262. https://doi.org/10.3389/fimmu.2015.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu Y, Huang X, Sun J et al (2020) Clinical characteristics and immune injury mechanisms in 71 patients with COVID-19. mSphere 5(4):e00362-20. https://doi.org/10.1128/mSphere.00362-20

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tang Y, Sun J, Pan H et al (2021) Aberrant cytokine expression in COVID-19 patients: associations between cytokines and disease severity. Cytokine 143:155523. https://doi.org/10.1016/j.cyto.2021.155523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Macor P, Durigutto P, Mangogna A et al (2021) Multi-organ complement deposition in COVID-19 patients. medRxiv. https://doi.org/10.1101/2021.01.07.21249116. Preprint

  20. Pfister F, Vonbrunn E, Ries T et al (2021) Complement activation in kidneys of patients with COVID-19. Front Immunol 11:594849. https://doi.org/10.3389/fimmu.2020.594849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jamaly S, Tsokos MG, Bhargava R et al (2021) Complement activation and increased expression of Syk, mucin-1 and CaMK4 in kidneys of patients with COVID-19. Clin Immunol 229:108795. https://doi.org/10.1016/j.clim.2021.108795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Messner CB, Demichev V, Wendisch D et al (2020) Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst 11(1):11–24.e4. https://doi.org/10.1016/j.cels.2020.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hou X, Zhang X, Wu X et al (2020) Serum protein profiling reveals a landscape of inflammation and immune signaling in early-stage COVID-19 infection. Mol Cell Proteomics 19(11):1749–1759

    Article  CAS  Google Scholar 

  24. Liu X, Cao Y, Fu H et al (2021) Proteomics analysis of serum from COVID-19 patients. ACS Omega 6(11):7951–7958

    Article  CAS  Google Scholar 

  25. Lazari LC, Ghilardi FR, Rosa-Fernandes L et al (2021) Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci Alliance 4(8):e202000946. https://doi.org/10.26508/lsa.202000946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laudanski K, Jihane H, Antalosky B et al (2021) Unbiased analysis of temporal changes in immune serum markers in acute COVID-19 infection with emphasis on organ failure, anti-viral treatment, and demographic characteristics. Front Immunol 12:650465. https://doi.org/10.3389/fimmu.2021.650465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Memon D, Barrio-Hernandez I, Beltrao P (2021) Individual COVID-19 disease trajectories revealed by plasma proteomics. EMBO Mol Med 13(8):e14532. https://doi.org/10.15252/emmm.202114532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  Google Scholar 

  29. Koutroukides TA, Guest PC, Leweke FM et al (2011 Jul) (2011) characterization of the human serum depletome by label-free shotgun proteomics. J Sep Sci 34(13):1621–1626

    Article  CAS  Google Scholar 

  30. Fioramonte M, Guest PC, Martins-de-Souza D (2017) LC-MSE for qualitative and quantitative proteomic studies of psychiatric disorders. Adv Exp Med Biol 974:115–129

    Article  CAS  Google Scholar 

  31. Garcia S, Silva-Costa LC, Reis-de-Oliveira G et al (2017) Identifying biomarker candidates in the blood plasma or serum proteome. Adv Exp Med Biol 974:193–203

    Article  CAS  Google Scholar 

  32. Urbas L, Brne P, Gabor B et al (2009) Depletion of high-abundance proteins from human plasma using a combination of an affinity and pseudo-affinity column. J Chromatogr A 1216(13):2689–2694

    Article  CAS  Google Scholar 

  33. Ahmed N, Rice GE (2005) Strategies for revealing lower abundance proteins in two-dimensional protein maps. J Chromatogr B Analyt Technol Biomed Life Sci 815(1–2):39–50

    Article  CAS  Google Scholar 

  34. Tam SW, Pirro J, Hinerfeld D (2004) Depletion and fractionation technologies in plasma proteomic analysis. Expert Rev Proteomics 1(4):411–420

    Article  CAS  Google Scholar 

  35. Pernemalm M, Lehtiö J (2014) Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics 11(4):431–448

    Article  CAS  Google Scholar 

  36. Echan LA, Tang HY, Ali-Khan N et al (2005) Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 5(13):3292–3303

    Article  CAS  Google Scholar 

  37. Liu T, Qian WJ, Mottaz HM (2006) Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol Cell Proteomics 5(11):2167–2174

    Article  CAS  Google Scholar 

  38. Bellei E, Bergamini S, Monari E et al (2011) High-abundance proteins depletion for serum proteomic analysis: concomitant removal of non-targeted proteins. Amino Acids 40(1):145–156

    Article  CAS  Google Scholar 

  39. https://www.euro.who.int/__data/assets/pdf_file/0005/268790/WHO-guidelines-on-drawing-blood-best-practices-in-phlebotomy-Eng.pdf

  40. Levin Y, Schwarz E, Wang L et al (2007) Label-free LCMS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J Sep Sci 30(14):2198–2203

    Article  CAS  Google Scholar 

  41. Silva JC, Denny R, Dorschel CA et al (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77(7):2187–2200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C., Rahmoune, H. (2022). Antibody-Based Affinity Capture Combined with LC-MS Analysis for Identification of COVID-19 Disease Serum Biomarkers. In: Guest, P.C. (eds) Multiplex Biomarker Techniques. Methods in Molecular Biology, vol 2511. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2395-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2395-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2394-7

  • Online ISBN: 978-1-0716-2395-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation