Ergodic Theory: Recurrence

  • Reference work entry
  • First Online:
Ergodic Theory
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2021

Glossary

Almost every, essentially:

Given a Lebesgue measure space (X, ℬ, μ), a property P(x) predicated of elements of X is said to hold for almost every xX, if the set X \ {x: P (x) holds} has zero measure. Two sets A, B ∈ ℬ are essentially disjoint if μ(A ∩ B) = 0.

Conservative system:

Is an infinite measure preserving system such that for no set A ∈ ℬ with positive measure are A, T1A, T2A, pairwise essentially disjoint.

(cn)-Conservative system:

If (cn)n∈ℕ is a decreasing sequence of positive real numbers, a conservative ergodic measure preserving transformation T is (cn)-conservative if for some nonnegative function fL1(μ), \( {\sum}_{n=1}^{\infty }{c}_n\, f\left({T}^nx\right)=\infty \) a.e.

Doubling map:

If \( \mathbb{T} \) is the interval [0, 1] with its endpoints identified and addition performed modulo 1, the (non-invertible) transformation T: \( \mathbb{T} \)  \( \mathbb{T} \), defined by Tx = 2xmod 1, preserves Lebesgue measure, hence induces a measure...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 249.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaronson J (1981) The asymptotic distribution behavior of transformations preserving infinite measures. J Anal Math 39:203–234

    Article  MATH  Google Scholar 

  • Aaronson J (1997) An introduction to infinite ergodic theory. Mathematical surveys and monographs, vol 50. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Austin T. Multiple recurrence and finding patterns in dense sets. In: Badziahin D, Gorodnik A, Peyerimhoff N (eds) Dynamics and analytic number theory. London mathematical society lecture note series. Cambridge University Press, Cambridge, pp 189–257

    Google Scholar 

  • Barreira L (2001) Hausdorff dimension of measures via Poincaré recurrence. Commun Math Phys 219:443–463

    Article  MATH  Google Scholar 

  • Barreira L (2005) Poincaré recurrence: old and new. In: XIVth international congress on mathematical physics. World Scientific Publishing, Hackensack, pp 415–422

    Google Scholar 

  • Behrend F (1946) On sets of integers which contain no three in arithmetic progression. Proc Natl Acad Sci U S A 23:331–332

    Article  MATH  Google Scholar 

  • Bergelson V (1987a) Weakly mixing PET. Ergodic Theory Dyn Syst 7:337–349

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V (1987b) Ergodic Ramsey theory (ed: Simpson S, Logic and combinatorics). Contemp Math 65:63–87

    Google Scholar 

  • Bergelson V (1996) Ergodic Ramsey theory – an update, Ergodic Theory of ℤd-actions (ed: Pollicott M, Schmidt K). London Math Soc Lecture Note Ser 228:1–61

    Google Scholar 

  • Bergelson V (2000) The multifarious Poincare recurrence theorem. In: Foreman M, Kechris A, Louveau A, Weiss B (eds) Descriptive set theory and dynamical systems. London mathematical society lecture note series, vol 277. Cambridge University Press, Cambridge, pp 31–57

    Chapter  Google Scholar 

  • Bergelson V (2006a) Combinatorial and Diophantine applications of Ergodic theory. Appendix A by A. Leibman and Appendix B by A. Quas and M. Wierdl. In: Hasselblatt B, Katok A (eds) Handbook of dynamical systems, vol. 1B. Elsevier, Amsterdam, pp 745–841

    Chapter  MATH  Google Scholar 

  • Bergelson V (2006b) Ergodic Ramsey theory: a dynamical approach to static theorems. In: Proceedings of the international congress of mathematicians, vol II. Madrid, pp 1655–1678

    Google Scholar 

  • Bergelson V, Leibman A (1996) Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J Am Math Soc 9:725–753

    Article  MATH  Google Scholar 

  • Bergelson V, McCutcheon R (2000) An ergodic IP polynomial Szemerédi theorem. Mem Am Math Soc 146:viii+106 pp

    Google Scholar 

  • Bergelson V, McCutcheon R (2007) Central sets and a noncommutative Roth theorem. Am J Math 129:1251–1275

    Article  MATH  Google Scholar 

  • Bergelson V, McCutcheon R (2010) Idempotent ultrafilters, multiple weak mixing and Szemerédi’s theorem for generalized polynomials. J Anal Math 111:77–130

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V, Furstenberg H, McCutcheon R (1996) IP-sets and polynomial recurrence. Ergodic Theory Dyn Syst 16:963–974

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V, Host B, McCutcheon R, Parreau F (2000) Aspects of uniformity in recurrence. Colloq Math 84/85(Part 2):549–576

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V, Host B, Kra B, with an appendix by Ruzsa I (2005) Multiple recurrence and nilsequences. Invent Math 160(2):261–303

    Google Scholar 

  • Bergelson V, Håland-Knutson I, McCutcheon R (2006) IP systems, generalized polynomials and recurrence. Ergodic Theory Dyn Syst 26:999–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V, Leibman A, Lesigne E (2008) Intersective polynomials and the polynomial Szemerédi theorem. Adv Math 219(1):369–388

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V, Leibman A, Ziegler T (2011) The shifted primes and the multidimensional Szemerédi and polynomial van der Waerden Theorems. Comptes Rendus Mathematique 349(3–4):123–125

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V, Kolesnik G, Son Y (2019) Uniform distribution of subpolynomial functions along primes and applications. J Anal Math 137(1):135–187

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V, Kułaga-Przymus J, Lemańczyk M. A structure theorem for level sets of multiplicative functions and applications. To appear in Int Math Res Not. ar**v:1708.02613

    Google Scholar 

  • Bergelson V, Moreira J, Richter FK. Single and multiple recurrence along non-polynomial sequences. Preprint, ar**v:1711.05729

    Google Scholar 

  • Bhattacharya B, Ganguly S, Shao X, Zhao Y. Upper tails large deviations for arithmetic progressions in a random set. To appear in Int Math Res Note. ar**v:1605.02994

    Google Scholar 

  • Birkhoff G (1931) A proof of the ergodic theorem. Proc Natl Acad Sci U S A 17:656–660

    Article  MATH  Google Scholar 

  • Boshernitzan M (1993) Quantitative recurrence results. Invent Math 113:617–631

    Article  MathSciNet  MATH  Google Scholar 

  • Boshernitzan M, Kolesnik G, Quas A, Wierdl M (2005) Ergodic averaging sequences. J Anal Math 95:63–103

    Article  MathSciNet  MATH  Google Scholar 

  • Bourgain J (1986) A Szemerédi type theorem for sets of positive density in ℝk. Israel J Math 54(3):307–316

    Article  MathSciNet  MATH  Google Scholar 

  • Bourgain J (1988) On the maximal ergodic theorem for certain subsets of the positive integers. Israel J Math 61:39–72

    Article  MathSciNet  MATH  Google Scholar 

  • Briët J, Gopi S. Gaussian width bounds with applications to arithmetic progressions in random settings. To appear in Int Math Res Note. ar**v:1711.05624

    Google Scholar 

  • Briët J, Dvir Z, Gopi S (2017) Outlaw distributions and locally decodable codes. Proc ITCS ar**v:1609.06355

    Google Scholar 

  • Brown T, Graham R, Landman B (1999) On the set of common differences in van der Waerden’s theorem on arithmetic progressions. Can Math Bull 42:25–36

    Article  MathSciNet  MATH  Google Scholar 

  • Carathéodory C (1968) Vorlesungen über reelle Funktionen, 3rd edn. Chelsea Publishing, New York

    MATH  Google Scholar 

  • Chazottes J, Ugalde E (2005) Entropy estimation and fluctuations of hitting and recurrence times for Gibbsian sources. Discrete Contin Dyn Syst Ser B 5(3):565–586

    MathSciNet  MATH  Google Scholar 

  • Christ M. On random multilinear operator inequalities. Unpublished manuscript. Available at ar**v:1108.5655

    Google Scholar 

  • Conze J, Lesigne E (1984) Théorèmes ergodiques pour des mesures diagonales. Bull Soc Math France 112(2):143–175

    Article  MathSciNet  MATH  Google Scholar 

  • Conze J, Lesigne E (1988) Sur un théorème ergodique pour des mesures diagonales. In: Probabilités, Publ Inst Rech Math Rennes, 1987-1. University of Rennes I, Rennes, pp 1–31

    Google Scholar 

  • Donoso S, Le AN, Moreira J, Sun W. Optimal lower bounds for multiple recurrence. To appear in Ergodic Theory Dyn Syst. ar**v:1809.06912

    Google Scholar 

  • Einsiedler M, Ward T (2011) Ergodic theory with a view towards number theory. Graduate texts in mathematics, vol 259. Springer London, London

    Book  MATH  Google Scholar 

  • Evans D, Searles D (2002) The fluctuation theorem. Adv Phys 51:1529–1585

    Article  Google Scholar 

  • Falconer K, Marstrand J (1986) Plane sets with positive density at infinity contain all large distances. Bull Lond Math Soc 18:471–474

    Article  MathSciNet  MATH  Google Scholar 

  • Forrest A (1991) The construction of a set of recurrence which is not a set of strong recurrence. Israel J Math 76:215–228

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N (2008) Multiple ergodic averages for three polynomials and applications. Trans Am Math Soc 360(10):5435–5475

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N (2009) Equidistribution of sparse sequences on nilmanifolds. J Anal Math 109:353–395

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N (2010) Multiple recurrence and convergence for Hardy sequences of polynomial growth. J Anal Math 112:79–135

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N (2016) Some open problems on multiple ergodic averages. Bull Hell Math Soc 60:41–90

    MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Host B (2017a) Higher order Fourier analysis of multiplicative functions and applications. J Am Math Soc 30:67–157

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Host B (2017b) Multiple ergodic theorems for arithmetic sets. Trans Am Math Soc 369(10):7085–7105

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Host B (2018) The logarithmic Sarnak conjecture for ergodic weights. Ann Math 187:869–931

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Host B. Furstenberg systems of bounded multiplicative functions and applications. To appear in Int Math Res Note IMRN. ar**v:1804.08556

    Google Scholar 

  • Frantzikinakis N, Kra B (2006) Ergodic averages for independent polynomials and applications. J London Math Soc 74(1):131–142

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Wierdl M (2009) A Hardy field extension of Szemerédi’s theorem. Adv Math 222:1–43

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Lesigne E, Wierdl M (2006) Sets of k-recurrence but not (k + 1)-recurrence. Ann Inst Fourier 56(4):839–849

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Host B, Kra B (2007) Multiple recurrence and convergence for sets related to the primes. J Reine Angew Math 611:131–144

    MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Lesigne E, Wierdl M (2012) Random sequences and pointwise convergence of multiple ergodic averages. Indiana Univ Math J 61:585–617

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Host B, Kra B (2013) The polynomial multidimensional Szemerédi Theorem along shifted primes. Israel J Math 194:331–348

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzikinakis N, Lesigne E, Wierdl M (2016) Random differences in Szemerédi’s theorem and related results. J Anal Math 130:91–133

    Article  MathSciNet  MATH  Google Scholar 

  • Furstenberg H (1977) Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Anal Math 71:204–256

    Article  MATH  Google Scholar 

  • Furstenberg H (1981) Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Furstenberg H, Katznelson Y (1979) An ergodic Szemerédi theorem for commuting transformations. J Anal Math 34:275–291

    Article  MATH  Google Scholar 

  • Furstenberg H, Katznelson Y (1985) An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J Anal Math 45:117–168

    Article  MATH  Google Scholar 

  • Furstenberg H, Katznelson Y (1991) A density version of the Hales-Jewett theorem. J Anal Math 57:64–119

    Article  MathSciNet  MATH  Google Scholar 

  • Furstenberg H, Weiss B (1996) A mean ergodic theorem for \( \left(1/N\right){\sum}_{n=1}^N\ f\left({T}^nx\right)g\left({T}^{n^2}x\right) \). Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ Math Res Inst Publ, vol 5, de Gruyter, Berlin, pp 193–227

    Google Scholar 

  • Furstenberg H, Katznelson Y, Ornstein D (1982) The ergodic theoretical proof of Szemerédi’s theorem. Bull Am Math Soc 7(3):527–552

    Article  MATH  Google Scholar 

  • Furstenberg H, Katznelson Y, Weiss B (1990) Ergodic theory and configurations in sets of positive density. In: Mathematics of Ramsey theory. Algorithms combinatorics, vol 5. Springer, Berlin, pp 184–198

    Chapter  MATH  Google Scholar 

  • Galatolo S, Kim DH, Park KK (2006) The recurrence time for ergodic systems with infinite invariant measures. Nonlinearity 19:2567–2580

    Article  MathSciNet  MATH  Google Scholar 

  • Glasner E (2003) Ergodic theory via joinings. Mathematical surveys and monographs, vol 101. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Gowers W (2001) A new proof of Szemerédi’s theorem. Geom Funct Anal 11:465–588

    Article  MathSciNet  MATH  Google Scholar 

  • Graham RL (1994) Recent trends in Euclidean Ramsey theory. Trends in discrete mathematics. Discrete Math 136(1–3):119–127

    Article  MathSciNet  MATH  Google Scholar 

  • Green B, Tao T (2008) The primes contain arbitrarily long arithmetic progressions. Ann Math 167:481–547

    Article  MathSciNet  MATH  Google Scholar 

  • Green B, Tao T (2010) Linear equations in primes. Ann Math 171:1753–1850

    Article  MathSciNet  MATH  Google Scholar 

  • Green B, Tao T (2012a) The quantitative behaviour of polynomial orbits on nilmanifolds. Ann Math 175:465–540

    Article  MathSciNet  MATH  Google Scholar 

  • Green B, Tao T (2012b) The Möbius function is strongly orthogonal to nilsequences. Ann Math 175:541–566

    Article  MathSciNet  MATH  Google Scholar 

  • Green B, Tao T (2014) On the quantitative distribution of polynomial nilsequences- erratum. Ann Math 179:1175–1183, ar**v:1311.6170v3

    Article  MathSciNet  MATH  Google Scholar 

  • Green B, Tao T, Ziegler T (2012) An inverse theorem for the Gowers U s+1[N ]-norm. Ann Math 176(2):1231–1372

    Article  MathSciNet  MATH  Google Scholar 

  • Griesmer J. Bohr topology and difference sets for some abelian groups. Preprint, ar**v:1608.01014

    Google Scholar 

  • Hales A, Jewett R (1963) Regularity and positional games. Trans Am Math Soc 106:222–229

    Article  MathSciNet  MATH  Google Scholar 

  • Hasley T, Jensen M (2004) Hurricanes and butterflies. Nature 428:127–128

    Article  Google Scholar 

  • Host B, Kra B (2005) Nonconventional ergodic averages and nilmanifolds. Ann Math 161:397–488

    Article  MathSciNet  MATH  Google Scholar 

  • Host B, Kra B (2018) Nilpotent structures in Ergodic theory. Mathematical surveys and monographs, vol 236. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Kac M (1947) On the notion of recurrence in discrete stochastic processes. Bull Am Math Soc 53:1002–10010

    Article  MathSciNet  MATH  Google Scholar 

  • Kamae T, Mendés-France M (1978) Van der Corput’s difference theorem. Israel J Math 31:335–342

    Article  MathSciNet  MATH  Google Scholar 

  • Karageorgos D, Koutsogiannis A. Integer part independent polynomial averages and applications along primes. To appear in Studia Math. ar**v:1708.06820

    Google Scholar 

  • Katznelson Y (2001) Chromatic numbers of Cayley graphs on ℤ and recurrence. Paul Erdös and his mathematics (Budapest, 1999). Combinatorica 21(2):211–219

    Google Scholar 

  • Khintchine A (1934) Eine Verschärfung des Poincaréschen “Wiederkehrsatzes”. Comp Math 1:177–179

    MATH  Google Scholar 

  • Koutsogiannis A (2018a) Closest integer polynomial multiple recurrence along shifted primes. Ergodic Theory Dyn Syst 38:666–685

    Article  MathSciNet  MATH  Google Scholar 

  • Koutsogiannis A (2018b) Integer part polynomial correlation sequences. Ergodic Theory Dyn Syst 38:1525–1542

    Article  MathSciNet  MATH  Google Scholar 

  • Kra B (2006a) The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view. Bull Am Math Soc 43:3–23

    Article  MathSciNet  MATH  Google Scholar 

  • Kra B (2006b) From combinatorics to ergodic theory and back again. In: Proceedings of international congress of mathematicians, vol III. Madrid, pp 57–76

    Google Scholar 

  • Kra B (2007) Ergodic methods in additive combinatorics. In: Additive combinatorics, CRM proceedings and lecture notes, vol 43. American Mathematical Society, Providence, pp 103–143

    Chapter  Google Scholar 

  • Kra B (2011) Poincare recurrence and number theory: thirty years later. Bull Am Math Soc 48:497–501

    Article  MATH  Google Scholar 

  • Kriz I (1987) Large independent sets in shift invariant graphs. Solution of Bergelson’s problem. Graphs Comb 3:145–158

    Article  MathSciNet  MATH  Google Scholar 

  • Leibman A (2002) Lower bounds for ergodic averages. Ergodic Theory Dyn Syst 22:863–872

    Article  MathSciNet  MATH  Google Scholar 

  • Leibman A (2005a) Pointwise convergence of ergodic averages for polynomial sequences of rotations of a nilmanifold. Ergodic Theory Dyn Syst 25:201–213

    Article  MATH  Google Scholar 

  • Leibman A (2005b) Pointwise convergence of ergodic averages for polynomial actions of ℤd by translations on a nilmanifold. Ergodic Theory Dyn Syst 25:215–225

    Article  MathSciNet  MATH  Google Scholar 

  • McCutcheon R (1995) Three results in recurrence. In: Ergodic theory and its connections with harmonic analysis (Alexandria, 1993). London mathematical society lecture note series, vol 205. Cambridge University Press, Cambridge, pp 349–358

    Chapter  Google Scholar 

  • McCutcheon R (2005) FVIP systems and multiple recurrence. Israel J Math 146:157–188

    Article  MathSciNet  MATH  Google Scholar 

  • Meyerovitch T. On multiple and polynomial recurrent extensions of infinite measure preserving transformations. Unpublished. Available at ar**v:0703914v2

    Google Scholar 

  • Ornstein D, Weiss B (1993) Entropy and data compression schemes. IEEE Trans Inform Theory 39:78–83

    Article  MathSciNet  MATH  Google Scholar 

  • Peluse S, Prendiville S. Quantitative bounds in the non-linear Roth theorem. Preprint, ar**v:1903.02592

    Google Scholar 

  • Petersen K (1989) Ergodic theory. Cambridge studies in advanced mathematics, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Poincaré H (1890) Sur le problème des trois corps et les équations de la dynamique. Acta Math 13:1–270

    MATH  Google Scholar 

  • Polymath DHJ (2012) A new proof of the density Hales-Jewett theorem. Ann Math 175:1283–1327

    Article  MathSciNet  MATH  Google Scholar 

  • Prendiville S (2017) Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case. Discrete Anal 5:1–34

    MathSciNet  MATH  Google Scholar 

  • Rosenblatt J, Wierdl M (1995) Pointwise ergodic theorems via harmonic analysis. In: Ergodic theory and its connections with harmonic analysis (Alexandria, 1993). London mathematical society lecture note series, vol 205. Cambridge University Press, Cambridge, pp 3–151

    Chapter  Google Scholar 

  • Sárközy A (1978) On difference sets of integers III. Acta Math Acad Sci Hungar 31:125–149

    Article  MathSciNet  MATH  Google Scholar 

  • Shkredov I (2002) Recurrence in the mean. Mat Zametki 72(4):625–632; translation in Math Notes (2002) 72(3–4):576–582

    MathSciNet  Google Scholar 

  • Sklar L (2004) Philosophy of statistical mechanics. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Summer 2004 Edition). http://plato.stanford.edu/archives/sum2004/entries/statphys-statmech/

  • Sun W (2015) Multiple recurrence and convergence for certain averages along shifted primes. Ergodic Theory Dyn Syst 35(5):1592–1609

    Article  MathSciNet  MATH  Google Scholar 

  • Szemerédi E (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith 27:299–345

    Article  MathSciNet  MATH  Google Scholar 

  • Tao T, Teräväinen J. The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures. To appear in Duke Math J. ar**v:1708.02610

    Google Scholar 

  • Tao T, Teräväinen J. The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures. Preprint, ar**v:1809.02518

    Google Scholar 

  • Tao T, Ziegler T (2008) The primes contain arbitrarily long polynomial progressions. Acta Math 201:213–305

    Article  MathSciNet  MATH  Google Scholar 

  • von Newmman J (1932) Proof of the Quasi-ergodic hypothesis. Proc Natl Acad Sci U S A 18(1):70–82

    Article  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Graduate texts in mathematics, vol 79. Springer, New York/Berlin

    Book  Google Scholar 

  • Weiss B (2000) Single orbit dynamics. CBMS regional conference series in mathematics, vol 95. American Mathematical Society, Providence

    Google Scholar 

  • Wooley T, Ziegler T (2012) Multiple recurrence and convergence along the primes. Am J Math 134:1705–1732

    Article  MathSciNet  MATH  Google Scholar 

  • Wyner A, Ziv J (1989) Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression. IEEE Trans Inform Theory 35:1250–1258

    Article  MathSciNet  MATH  Google Scholar 

  • Zermelo E (1896) Über einen Satz der Dynamik und die mechanische Wärmetheorie. Ann Phys 57:485–494; English translation (1966) On a theorem of dynamics and the mechanical theory of heat. In: Brush SG (ed) Kinetic theory, vol II. Oxford, pp 208–217

    Article  MATH  Google Scholar 

  • Ziegler T (2006) Nilfactors of ℝm-actions and configurations in sets of positive upper density in ℝm. J Anal Math 99:249–266

    Article  MathSciNet  Google Scholar 

  • Ziegler T (2007) Universal characteristic factors and Furstenberg averages. J Am Math Soc 20:53–97

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Frantzikinakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Frantzikinakis, N., McCutcheon, R. (2023). Ergodic Theory: Recurrence. In: Silva, C.E., Danilenko, A.I. (eds) Ergodic Theory. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2388-6_184

Download citation

Publish with us

Policies and ethics

Navigation