Modulation of Cell Energy Metabolism by the P2X7 Receptor

  • Protocol
  • First Online:
The P2X7 Receptor

Abstract

For many years the P2X7 receptor (P2X7R) was considered the prototypic cytolytic receptor due to its ability to cause dramatic changes in plasma membrane permeability, eventually leading to cell death. However, later studies revealed that controlled P2X7R activation has beneficial effects on cell metabolism and nowadays our perception of the physiological role of this receptor has radically changed. Some of the biochemical pathways underlying the trophic effect of the P2X7R are being unveiled, thus disclosing an unanticipated role of P2X7Rs in mitochondrial and glycolytic metabolism. We provide here an update of the effects of the P2X7R on cell energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steinberg GR, Carling D (2019) AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 18(7):527–551

    Article  CAS  PubMed  Google Scholar 

  2. Giuliani AL et al (2019) Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 205:16–24

    Article  CAS  PubMed  Google Scholar 

  3. Vultaggio-Poma V et al (2020) Extracellular ATP: a feasible target for cancer therapy. Cells 9(11):2496

    Article  CAS  PubMed Central  Google Scholar 

  4. Michaud M et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577

    Article  CAS  PubMed  Google Scholar 

  5. Pietrocola F et al (2016) Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30(1):147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forrester T (1966) Release of adenosine triphosphate from active skeletal muscle. J Physiol 186(2):107P–109P

    CAS  PubMed  Google Scholar 

  7. Wilhelm K et al (2010) Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 16(12):1434–1438

    Article  CAS  PubMed  Google Scholar 

  8. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58(1):58–86

    Article  CAS  PubMed  Google Scholar 

  9. Rozengurt E, Heppel LA (1975) A specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem Biophys Res Commun 67(4):1581–1588

    Article  CAS  PubMed  Google Scholar 

  10. Rozengurt E et al (1977) Effect of exogenous ATP on the permeability properties of transformed cultures of mouse cell lines. J Biol Chem 252(13):4584–4590

    Article  CAS  PubMed  Google Scholar 

  11. Murgia M et al (1992) Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages. Biochem J 288(Pt 3):897–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zanovello P et al (1990) Responses of mouse lymphocytes to extracellular ATP. II. Extracellular ATP causes cell type-dependent lysis and DNA fragmentation. J Immunol 145(5):1545–1550

    CAS  PubMed  Google Scholar 

  13. Pizzo P et al (1992) Role of P2z purinergic receptors in ATP-mediated killing of tumor necrosis factor (TNF)-sensitive and TNF-resistant L929 fibroblasts. J Immunol 149(10):3372–3378

    CAS  PubMed  Google Scholar 

  14. Dubyak GR (2012) P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol 14(11):1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mackenzie AB et al (2005) Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. J Biol Chem 280(40):33968–33976

    Article  CAS  PubMed  Google Scholar 

  16. Chiozzi P et al (2019) Amyloid beta-dependent mitochondrial toxicity in mouse microglia requires P2X7 receptor expression and is prevented by nimodipine. Sci Rep 9(1):6475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Adinolfi E et al (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16(7):3260–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sarti AC et al (2021) Mitochondrial P2X7 receptor localization modulates energy metabolism enhancing physical performance. Function 2:zqab005

    Article  PubMed  PubMed Central  Google Scholar 

  19. Griffiths EJ, Rutter GA (2009) Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta 1787(11):1324–1333

    Article  CAS  PubMed  Google Scholar 

  20. Sluyter R (2017) The P2X7 receptor. Adv Exp Med Biol 1051:17–53

    Article  PubMed  Google Scholar 

  21. Atkinson L et al (2002) An ATP-gated ion channel at the cell nucleus. Nature 420(6911):42

    Article  CAS  PubMed  Google Scholar 

  22. Kuehnel MP et al (2009) Lipids regulate P2X7-receptor-dependent actin assembly by phagosomes via ADP translocation and ATP synthesis in the phagosome lumen. J Cell Sci 122(Pt 4):499–504

    Article  CAS  PubMed  Google Scholar 

  23. Wieckowski MR et al (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4(11):1582–1590

    Article  CAS  PubMed  Google Scholar 

  24. Di Virgilio F et al (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18(10):601–618

    Article  PubMed  CAS  Google Scholar 

  25. Gonnord P et al (2009) Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts. FASEB J 23(3):795–805

    Article  CAS  PubMed  Google Scholar 

  26. Ledderose C et al (2016) Mitochondrial dysfunction, depleted purinergic signaling, and defective T cell vigilance and immune defense. J Infect Dis 213(3):456–464

    Article  CAS  PubMed  Google Scholar 

  27. Ledderose C et al (2018) Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J Clin Invest 128(8):3583–3594

    Article  PubMed  PubMed Central  Google Scholar 

  28. Borges da Silva H et al (2018) The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8(+) T cells. Nature 559(7713):264–268

    Article  CAS  PubMed  Google Scholar 

  29. Ledderose C et al (2020) The purinergic receptor P2Y11 choreographs the polarization, mitochondrial metabolism, and migration of T lymphocytes. Sci Signal 13(651):eaba3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giacovazzo G et al (2018) Loss of P2X7 receptor function dampens whole body energy expenditure and fatty acid oxidation. Purinergic Signal 14(3):299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giacovazzo G et al (2019) Stimulation of P2X7 enhances whole body energy metabolism in mice. Front Cell Neurosci 13:390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glas R et al (2009) Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 52(8):1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beaucage KL et al (2014) Loss of P2X7 nucleotide receptor function leads to abnormal fat distribution in mice. Purinergic Signal 10(2):291–304

    Article  CAS  PubMed  Google Scholar 

  34. Meyers DE et al (2013) Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 40(4):385–394

    PubMed  PubMed Central  Google Scholar 

  35. Joza N et al (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25(23):10261–10272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghezzi D et al (2010) Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet 86(4):639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Katsyuba E et al (2018) De novo NAD(+) synthesis enhances mitochondrial function and improves health. Nature 563(7731):354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Crisol BM et al (2018) Nicotinamide riboside induces a thermogenic response in lean mice. Life Sci 211:1–7

    Article  CAS  PubMed  Google Scholar 

  39. Biswas A et al (2019) Loss of function mutation in the P2X7, a ligand-gated ion channel gene associated with hypertrophic cardiomyopathy. Purinergic Signal 15(2):205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pasqualetti G et al (2017) P2X7 receptor and APOE polymorphisms and survival from heart failure: a prospective study in frail patients in a geriatric unit. Aging Dis 8(4):434–441

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kroemer G, Verkhratsky A (2021) Mitochondrial localization and function of the purinergic receptor P2X7. Function 2:zqab006

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tian T et al (2020) The P2X7 ion channel is dispensable for energy and metabolic homeostasis of white and brown adipose tissues. Purinergic Signal 16(4):529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amoroso F et al (2012) The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Dis 3:e370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Association for Cancer Research (AIRC) grants No. IG 13025, IG 18581, IG 22883; the Ministry of University and Research of Italy, PRIN 2017 grant No. 8YTNWC, and funds from the University of Ferrara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Virgilio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Di Virgilio, F., Falzoni, S., Sarti, A.C., Chiozzi, P., Vultaggio-Poma, V., Giuliani, A.L. (2022). Modulation of Cell Energy Metabolism by the P2X7 Receptor. In: Nicke, A. (eds) The P2X7 Receptor. Methods in Molecular Biology, vol 2510. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2384-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2384-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2383-1

  • Online ISBN: 978-1-0716-2384-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation