Using Symmetrical Organic Cation Solutions to Study P2X7 Ion Permeation

  • Protocol
  • First Online:
The P2X7 Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2510))

Abstract

P2X7 receptors are ATP-gated ion channels permeable to metal cations, such as Na+, K+, and Ca2+. They also exhibit permeability to various large molecular weight species, reaching up to 900 Da, in a process known as macropore formation, which is a unique functional hallmark across the P2X family. While well-documented in a range of different cell types, the molecular mechanism underlying this phenomenon is poorly understood, and has been clouded through the use of electrophysiological methodology prone to artifacts as a result of significant changes in ionic concentrations in asymmetric conditions. In this chapter, we discuss the permeation properties of P2X7, the related methodological challenges and the use of symmetrical organic cation solutions as a useful technique for probing P2X7 permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCarthy AE, Yoshioka C, Mansoor SE (2019) Full-length P2X7 structures reveal how Palmitoylation prevents channel desensitization. Cell 179(3):659–670.e613. https://doi.org/10.1016/j.cell.2019.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Virgilio F, Schmalzing G, Markwardt F (2018) The elusive P2X7 macropore. Trends Cell Biol 28(5):392–404. https://doi.org/10.1016/j.tcb.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735. https://doi.org/10.1126/science.272.5262.735

    Article  CAS  PubMed  Google Scholar 

  4. Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD (2014) Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization. J Biol Chem 289(46):31983–31994. https://doi.org/10.1074/jbc.M114.574699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roger S, Gillet L, Baroja-Mazo A, Surprenant A, Pelegrin P (2010) C-terminal calmodulin-binding motif differentially controls human and Rat P2X7 receptor current facilitation. J Biol Chem 285(23):17514–17524. https://doi.org/10.1074/jbc.M109.053082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khakh BS, Bao XR, Labarca C, Lester HA (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci 2(4):322–330. https://doi.org/10.1038/7233

    Article  CAS  PubMed  Google Scholar 

  7. Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2(4):315–321. https://doi.org/10.1038/7225

    Article  CAS  PubMed  Google Scholar 

  8. Cankurtaran-Sayar S, Sayar K, Ugur M (2009) P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Mol Pharmacol 76(6):1323–1332. https://doi.org/10.1124/mol.109.059923

    Article  CAS  PubMed  Google Scholar 

  9. Schachter J, Motta AP, Zamorano AS, Silva-Souza HA, Guimarães MZP, Persechini PM (2008) ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci 121(19):3261–3270. https://doi.org/10.1242/jcs.029991

    Article  CAS  PubMed  Google Scholar 

  10. Janks L, Sharma CVR, Egan TM (2018) A central role for P2X7 receptors in human microglia. J Neuroinflammation 15(1):325. https://doi.org/10.1186/s12974-018-1353-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Janks L, Sprague RS, Egan TM (2019) ATP-gated P2X7 receptors require chloride channels to promote inflammation in human macrophages. J Immunol 202(3):883–898. https://doi.org/10.4049/jimmunol.1801101

    Article  CAS  PubMed  Google Scholar 

  12. Jiang L-H, Rassendren F, Mackenzie A, Zhang Y-H, Surprenant A, North RA (2005) N-methyl-d-glucamine and propidium dyes utilize different permeation pathways at rat P2X7 receptors. Am J Physiol Cell Physiol 289(5):C1295–C1302. https://doi.org/10.1152/ajpcell.00253.2005

    Article  CAS  PubMed  Google Scholar 

  13. Ugur M, Ugur Ö (2019) A mechanism-based approach to P2X7 receptor action. Mol Pharmacol 95(4):442–450. https://doi.org/10.1124/mol.118.115022

    Article  CAS  PubMed  Google Scholar 

  14. Peverini L, Beudez J, Dunning K, Chataigneau T, Grutter T (2018) New insights into permeation of large cations through ATP-gated P2X receptors. Front Mol Neurosci 11:265. https://doi.org/10.3389/fnmol.2018.00265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16(8):3659–3665. https://doi.org/10.1091/mbc.e05-03-0222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23(4):1320–1328. https://doi.org/10.1523/JNEUROSCI.23-04-01320.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mackenzie AB, Young MT, Adinolfi E, Surprenant A (2005) Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. J Biol Chem 280(40):33968–33976. https://doi.org/10.1074/jbc.M502705200

    Article  CAS  PubMed  Google Scholar 

  18. Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J, Austin J-S, Zaykin DV, Meulen HV, Costigan M, Herbert TA, Yarkoni-Abitbul M, Tichauer D, Livneh J, Gershon E, Zheng M, Tan K, John SL, Slade GD, Jordan J, Woolf CJ, Peltz G, Maixner W, Diatchenko L, Ze S, Salter MW, Mogil JS (2012) Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med 18(4):595–599. https://doi.org/10.1038/nm.2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aga M, Johnson CJ, Hart AP, Guadarrama AG, Suresh M, Svaren J, Bertics PJ, Darien BJ (2002) Modulation of monocyte signaling and pore formation in response to agonists of the nucleotide receptor P2X7. J Leukoc Biol 72(1):222–232. https://doi.org/10.1189/jlb.72.1.222

    Article  CAS  PubMed  Google Scholar 

  20. Rat P, Olivier E, Tanter C, Wakx A, Dutot M (2017) A fast and reproducible cell- and 96-well plate-based method for the evaluation of P2X7 receptor activation using YO-PRO-1 fluorescent dye. J Biol Methods 4(1):e64. https://doi.org/10.14440/jbm.2017.136

    Article  PubMed  PubMed Central  Google Scholar 

  21. Riedel T, Lozinsky I, Schmalzing G, Markwardt F (2007) Kinetics of P2X7 receptor-operated single channels currents. Biophys J 92(7):2377–2391. https://doi.org/10.1529/biophysj.106.091413

    Article  CAS  PubMed  Google Scholar 

  22. Riedel T, Schmalzing G, Markwardt F (2007) Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated Single-Channel currents. Biophys J 93(3):846–858. https://doi.org/10.1529/biophysj.106.103614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li M, Toombes GES, Silberberg SD, Swartz KJ (2015) Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat Neurosci 18(11):1577–1583. https://doi.org/10.1038/nn.4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harkat M, Peverini L, Cerdan AH, Dunning K, Beudez J, Martz A, Calimet N, Specht A, Cecchini M, Chataigneau T, Grutter T (2017) On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proc Natl Acad Sci U S A 114(19):E3786–E3795. https://doi.org/10.1073/pnas.1701379114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karasawa A, Michalski K, Mikhelzon P, Kawate T (2017) The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. Elife 6:e31186. https://doi.org/10.7554/eLife.31186

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63(3):641–683. https://doi.org/10.1124/pr.110.003129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marty A, Neher E (1983) Tight-seal whole-cell recording. In: Sakmann B, Neher E (eds) Single-Channel recording. Springer US, Boston, MA, pp 107–122. https://doi.org/10.1007/978-1-4615-7858-1_7

    Chapter  Google Scholar 

  28. Dolzer J (2021) Patch clamp technology in the twenty-first century. In: Dallas M, Bell D (eds) Patch clamp electrophysiology: methods and protocols. Springer US, New York, NY, pp 21–49. https://doi.org/10.1007/978-1-0716-0818-0_2

    Chapter  Google Scholar 

  29. Browne LE, Compan V, Bragg L, North RA (2013) P2X7 receptor channels allow direct permeation of nanometer-sized dyes. J Neurosci 33(8):3557–3566. https://doi.org/10.1523/JNEUROSCI.2235-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Virgilio F, Giuliani AL, Vultaggio-Poma V, Falzoni S, Sarti AC (2018) Non-nucleotide agonists triggering P2X7 receptor activation and pore formation. Front Pharmacol 9:39. https://doi.org/10.3389/fphar.2018.00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281(7):4274–4284. https://doi.org/10.1074/jbc.M510679200

    Article  CAS  PubMed  Google Scholar 

  32. Greenberg S, Di Virgilio F, Steinberg TH, Silverstein SC (1988) Extracellular nucleotides mediate Ca2+ fluxes in J774 macrophages by two distinct mechanisms. J Biol Chem 263(21):10337–10343

    Article  CAS  Google Scholar 

  33. Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262(18):8884–8888

    Article  CAS  Google Scholar 

  34. Faria RX, Freitas HR, Reis RAM (2017) P2X7 receptor large pore signaling in avian Müller glial cells. J Bioenerg Biomembr 49(3):215–229. https://doi.org/10.1007/s10863-017-9717-9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grutter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunning, K., Peverini, L., Grutter, T. (2022). Using Symmetrical Organic Cation Solutions to Study P2X7 Ion Permeation. In: Nicke, A. (eds) The P2X7 Receptor. Methods in Molecular Biology, vol 2510. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2384-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2384-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2383-1

  • Online ISBN: 978-1-0716-2384-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation