Cell-Free Expression of Proton-Coupled Folate Transporter in the Presence of Nanodiscs

  • Protocol
  • First Online:
Heterologous Expression of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2507))

Abstract

Proton coupled folate transporter (PCFT) is an integral membrane protein with 12 transmembrane segments localized to the plasma membrane. PCFT is the main route by which folate, vitamin B9, from dietary sources enters mammalian cells in the small intestine. Loss-of-function mutations in this membrane transport protein cause hereditary folate malabsorption, and upregulation of PCFT has been reported in cancer cells. Currently, a complete translocation mechanism of folate via PCFT is still missing. To reveal this mechanism via studies of structural architecture and structure–function relationships, soluble and stable PCFT in a phospholipid bilayer environment is needed. We therefore develop an approach to screen lipid environments in which PCFT is most soluble. Traditional in vitro expression and reconstitution into lipid bilayers of integral membrane proteins requires separate steps, which are costly and time-consuming. In this chapter, we describe a protocol for in vitro translation of PCFT into preformed lipid nanodiscs using a cell-free expression system, which helps to accelerate and reduce the cost of the sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu F, Luo W, Cady SD, Hong M (2011) Conformational plasticity of the influenza A M2 transmembrane helix in lipid bilayers under varying pH, drug binding, and membrane thickness. Biochim Biophys Acta 1808(1):415–423. https://doi.org/10.1016/j.bbamem.2010.09.014

    Article  CAS  PubMed  Google Scholar 

  2. Liu SA, Focke PJ, Matulef K, Bian XL, Moenne-Loccoz P, Valiyaveetil FI, Lockless SW (2015) Ion-binding properties of a K+ channel selectivity filter in different conformations. Proc Natl Acad Sci U S A 112(49):15096–15100. https://doi.org/10.1073/pnas.1510526112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I (2009) Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem 284(44):30727–30736. https://doi.org/10.1074/jbc.M109.011221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh DK, Shentu TP, Enkvetchakul D, Levitan I (2011) cholesterol regulates prokaryotic Kir channel by direct binding to channel protein. Biochim Biophys Acta 1808(10):2527–2533. https://doi.org/10.1016/j.bbamem.2011.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477(7365):495–498. https://doi.org/10.1038/nature10370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng WWL, D'Avanzo N, Doyle DA, Nichols CG (2011) Dual-mode phospholipid regulation of human inward rectifying potassium channels. Biophys J 100(3):620–628. https://doi.org/10.1016/j.bpj.2010.12.3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furst O, Mondou B, D'Avanzo N (2014) Phosphoinositide regulation of inward rectifier potassium (Kir) channels. Front Physiol 4:404. https://doi.org/10.3389/fphys.2013.00404

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lavington S, Watts A (2020) Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Biophys Rev 12(6):1287–1302. https://doi.org/10.1007/s12551-020-00775-5

    Article  CAS  PubMed Central  Google Scholar 

  9. Dijkman PM, Munoz-Garcia JC, Lavington SR, Kumagai PS, Dos Reis RI, Yin D, Stansfeld PJ, Costa-Filho AJ, Watts A (2020) Conformational dynamics of a G protein-coupled receptor helix 8 in lipid membranes. Sci Adv 6(33):eaav8207. https://doi.org/10.1126/sciadv.aav8207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiu A, Min SH, Jansen M, Malhotra U, Tsai E, Cabelof DC, Matherly LH, Zhao R, Akabas MH, Goldman ID (2007) Rodent intestinal folate transporters (SLC46A1): secondary structure, functional properties, and response to dietary folate restriction. Am J Phys Cell Phys 293(5):C1669–C1678. https://doi.org/10.1152/ajpcell.00202.2007

    Article  CAS  Google Scholar 

  11. Date SS, Chen CY, Chen Y, Jansen M (2016) Experimentally optimized threading structures of the proton-coupled folate transporter. FEBS Open Biol 6(3):216–230. https://doi.org/10.1002/2211-5463.12041

    Article  CAS  Google Scholar 

  12. Parker JL, Deme JC, Kuteyi G, Wu Z, Huo J, Goldman ID, Owens RJ, Biggin PC, Lea SM, Newstead S (2021) Structural basis of antifolate recognition and transport by PCFT. Nature 595(7865):130–134. https://doi.org/10.1038/s41586-021-03579-z

    Article  CAS  PubMed  Google Scholar 

  13. Qiu AD, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao RB, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127(5):917–928. https://doi.org/10.1016/j.cell.2006.09.041

    Article  CAS  PubMed  Google Scholar 

  14. Inoue K, Nakai Y, Ueda S, Kamigaso S, Ohta KY, Hatakeyama M, Hayashi Y, Otagiri M, Yuasa H (2008) Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model. Am J Physiol Gastrointest Liver Physiol 294(3):G660–G668. https://doi.org/10.1152/ajpgi.00309.2007

    Article  CAS  PubMed  Google Scholar 

  15. Urquhart BL, Gregor JC, Chande N, Knauer MJ, Tirona RG, Kim RB (2010) The human proton-coupled folate transporter (hPCFT): modulation of intestinal expression and function by drugs. Am J Physiol Gastrointest Liver Physiol 298(2):G248–G254. https://doi.org/10.1152/ajpgi.00224.2009

    Article  CAS  PubMed  Google Scholar 

  16. Sierra EE, Goldman ID (1998) Characterization of folate transport mediated by a low pH route in mouse L1210 leukemia cells with defective reduced folate carrier function. Biochem Pharmacol 55(9):1505–1512. https://doi.org/10.1016/s0006-2952(97)00673-4

    Article  CAS  PubMed  Google Scholar 

  17. Kugel Desmoulin S, Wang L, Hales E, Polin L, White K, Kushner J, Stout M, Hou Z, Cherian C, Gangjee A, Matherly LH (2011) Therapeutic targeting of a novel 6-substituted pyrrolo [2,3-d]pyrimidine thienoyl antifolate to human solid tumors based on selective uptake by the proton-coupled folate transporter. Mol Pharmacol 80(6):1096–1107. https://doi.org/10.1124/mol.111.073833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonen N, Assaraf YG (2012) Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist Updat 15(4):183–210. https://doi.org/10.1016/j.drup.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  19. Visentin M, Zhao R, Goldman ID (2012) The antifolates. Hematol Oncol Clin North Am 26(3):629–648. https://doi.org/10.1016/j.hoc.2012.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martin M (2006) Clinical experience with pemetrexed in breast cancer. Semin Oncol 33(1 Suppl 2):S15–S18. https://doi.org/10.1053/j.seminoncol.2005.07.027

    Article  CAS  PubMed  Google Scholar 

  21. Assaraf YG (2007) Molecular basis of antifolate resistance. Cancer Metastasis Rev 26(1):153–181. https://doi.org/10.1007/s10555-007-9049-z

    Article  CAS  PubMed  Google Scholar 

  22. Jarmula A (2010) Antifolate inhibitors of thymidylate synthase as anticancer drugs. Mini Rev Med Chem 10(13):1211–1222. https://doi.org/10.2174/13895575110091211

    Article  CAS  PubMed  Google Scholar 

  23. Cohen MH, Justice R, Pazdur R (2009) Approval summary: pemetrexed in the initial treatment of advanced/metastatic non-small cell lung cancer. Oncologist 14(9):930–935. https://doi.org/10.1634/theoncologist.2009-0092

    Article  CAS  PubMed  Google Scholar 

  24. Cohen MH, Cortazar P, Justice R, Pazdur R (2010) Approval summary: pemetrexed maintenance therapy of advanced/metastatic nonsquamous, non-small cell lung cancer (NSCLC). Oncologist 15(12):1352–1358. https://doi.org/10.1634/theoncologist.2010-0224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Do HQ, Bassil CM, Andersen EI, Jansen M (2021) Impact of nanodisc lipid composition on cell-freeexpression of proton-coupled folate transporter. PLoS One 16(11):e0253184. https://doi.org/10.1371/journal.pone.0253184

Download references

Acknowledgements

We thank the TTUHSC Core Facilities; some of the images and/or data were generated in the Image Analysis Core Facility and Molecular Biology Core Facility supported by TTUHSC. We are also grateful to the members of the Center for Membrane Protein Research for insightful discussions. Research reported in this publication was supported in part by the TTUHSC Office of Research, and the Laura W. Bush Institute for Women’s Health & UMC Health System with seed grants, and by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R01/R56NS077114 (to M.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Do, H.Q., Jansen, M. (2022). Cell-Free Expression of Proton-Coupled Folate Transporter in the Presence of Nanodiscs. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 2507. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2368-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2368-8_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2367-1

  • Online ISBN: 978-1-0716-2368-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation