Generation of Gene Drive Mice for Invasive Pest Population Suppression

  • Protocol
  • First Online:
Applications of Genome Modulation and Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2495))

Abstract

Gene drives are genetic elements that are transmitted to greater than 50% of offspring and have potential for population modification or suppression. While gene drives are known to occur naturally, the recent emergence of CRISPR-Cas9 genome-editing technology has enabled generation of synthetic gene drives in a range of organisms including mosquitos, flies, and yeast. For example, studies in Anopheles mosquitos have demonstrated >95% transmission of CRISPR-engineered gene drive constructs, providing a possible strategy for malaria control. Recently published studies have also indicated that it may be possible to develop gene drive technology in invasive rodents such as mice. Here, we discuss the prospects for gene drive development in mice, including synthetic “homing drive” and X-shredder strategies as well as modifications of the naturally occurring t haplotype. We also provide detailed protocols for generation of gene drive mice through incorporation of plasmid-based transgenes in a targeted and non-targeted manner. Importantly, these protocols can be used for generating transgenic mice for any project that requires insertion of kilobase-scale transgenes such as knock-in of fluorescent reporters, gene swaps, overexpression/ectopic expression studies, and conditional “floxed” alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 161.19
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 228.79
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288

    Article  Google Scholar 

  2. Stenseth NC et al (2003) Mice, rats, and people: the bio-economics of agricultural rodent pests. Front Ecol Environ 1(7):367–375

    Article  Google Scholar 

  3. McLeod R (2004) Counting the cost: impact of invasive animals in Australia. Cooperative Research Centre for Pest Animal Control, Canberra

    Google Scholar 

  4. Blackburn TM et al (2004) Avian extinction and mammalian introductions on oceanic Islands. Science 305(5692):1955–1958

    Article  CAS  Google Scholar 

  5. Harris DB (2008) Review of negative effects of introduced rodents on small mammals on islands. Biol Invasions 11(7):1611–1630

    Article  Google Scholar 

  6. Doherty TS et al (2016) Invasive predators and global biodiversity loss. Proc Natl Acad Sci U S A 113(40):11261–11265

    Article  CAS  Google Scholar 

  7. Piaggio AJ et al (2017) Is it time for synthetic biodiversity conservation? Trends Ecol Evol 32(2):97–107

    Article  Google Scholar 

  8. Gregory S et al (2014) Eradications of vertebrate pests in Australia: a review and guidelines for future best practice. Invasive Animals Cooperative Research Centre, Canberra, Australia, pp 1–90

    Google Scholar 

  9. Esvelt KM et al (2014) Concerning RNA-guided gene drives for the alteration of wild populations. elife 3:e03401

    Article  Google Scholar 

  10. Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270(1518):921–928

    Article  CAS  Google Scholar 

  11. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  12. **ek M et al (2012) A Programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  13. Prowse TAA et al (2017) Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates. Proc Biol Sci 284(1860):20170799

    PubMed  PubMed Central  Google Scholar 

  14. Galizi R et al (2014) A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun 5:3977

    Article  CAS  Google Scholar 

  15. Simoni A et al (2020) A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol 38(9):1054–1060

    Article  CAS  Google Scholar 

  16. Kyrou K et al (2018) A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol 36(11):1062–1066

    Article  CAS  Google Scholar 

  17. Hammond A et al (2016) A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34(1):78–83

    Article  CAS  Google Scholar 

  18. Haghighat-Khah RE et al (2020) Cellular mechanisms regulating synthetic sex ratio distortion in the Anopheles gambiae germline. Pathog Glob Health 114(7):370–378

    Article  CAS  Google Scholar 

  19. Gantz VM et al (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 112(49):E6736–E6743

    Article  CAS  Google Scholar 

  20. Champer SE et al (2021) Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLoS Comput Biol 17(12):e1009660

    Article  CAS  Google Scholar 

  21. Grunwald HA et al (2019) Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline. Nature 566(7742):105–109

    Article  CAS  Google Scholar 

  22. Pfitzner C et al (2020) Progress toward zygotic and germline gene drives in mice. CRISPR J 3(5):388–397

    Article  CAS  Google Scholar 

  23. Gallardo T et al (2007) Generation of a germ cell-specific mouse transgenic Cre line. Vasa-Cre Genesis 45(6):413–417

    CAS  PubMed  Google Scholar 

  24. Champer J et al (2018) Reducing resistance allele formation in CRISPR gene drive. Proc Natl Acad Sci U S A 115(21):5522–5527

    Article  CAS  Google Scholar 

  25. Unckless RL, Clark AG, Messer PW (2017) Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205(2):827–841

    Article  Google Scholar 

  26. Noble C et al (2017) Evolutionary dynamics of CRISPR gene drives. Sci Adv 3(4):e1601964

    Article  Google Scholar 

  27. Champer SE et al (2020) Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci Adv 6(10):eaaz0525

    Article  CAS  Google Scholar 

  28. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 1991:511–577

    Article  Google Scholar 

  29. McFarlane GR, Whitelaw CBA, Lillico SG (2018) CRISPR-based gene drives for pest control. Trends Biotechnol 36(2):130–133

    Article  CAS  Google Scholar 

  30. Burt A, Deredec A (2018) Self-limiting population genetic control with sex-linked genome editors. Proc Biol Sci 285(1883):20180776. https://doi.org/10.1098/rspb.2018.0776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuo E et al (2017) CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol 18(1):224

    Article  Google Scholar 

  32. Prowse TA et al (2019) A Y-chromosome shredding gene drive for controlling pest vertebrate populations. elife 8

    Google Scholar 

  33. Kelemen RK, Vicoso B (2018) Complex history and differentiation patterns of the t-Haplotype, a mouse meiotic driver. Genetics 208(1):365–375

    Article  CAS  Google Scholar 

  34. Koopman P et al (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351(6322):117–121

    Article  CAS  Google Scholar 

  35. Backus GA, Gross K (2016) Genetic engineering to eradicate invasive mice on islands: modeling the efficiency and ecological impacts. Ecosphere 7(12):e01589

    Article  Google Scholar 

  36. Manser A et al (1909) Controlling invasive rodents via synthetic gene drive and the role of polyandry. Proc Biol Sci 2019(286):20190852

    Google Scholar 

  37. Manser A, Konig B, Lindholm AK (2020) Polyandry blocks gene drive in a wild house mouse population. Nat Commun 11(1):5590

    Article  CAS  Google Scholar 

  38. Kandul NP et al (2020) Assessment of a split homing based gene drive for efficient knockout of multiple genes. G3 (Bethesda) 10(2):827–837

    Article  CAS  Google Scholar 

  39. Noble C et al (2019) Daisy-chain gene drives for the alteration of local populations. Proc Natl Acad Sci U S A 116(17):8275–8282

    Article  CAS  Google Scholar 

  40. Sudweeks J et al (2019) Locally fixed alleles: a method to localize gene drive to island populations. Sci Rep 9(1):15821

    Article  Google Scholar 

  41. Lopez Del Amo V et al (2020) Small-molecule control of super-mendelian inheritance in gene drives. Cell Rep 31(13):107841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Q. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bunting, M.D., Pfitzner, C., Gierus, L., White, M., Piltz, S., Thomas, P.Q. (2022). Generation of Gene Drive Mice for Invasive Pest Population Suppression. In: Verma, P.J., Sumer, H., Liu, J. (eds) Applications of Genome Modulation and Editing. Methods in Molecular Biology, vol 2495. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2301-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2301-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2300-8

  • Online ISBN: 978-1-0716-2301-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation