CO2 to Methanol: A Highly Efficient Enzyme Cascade

  • Protocol
  • First Online:
Multienzymatic Assemblies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2487))

Abstract

Carbon dioxide (CO2) has been increasingly regarded not only as a greenhouse gas but also as a valuable feedstock for carbon-based chemicals. In particular, biological approaches have drawn attention as models for the production of value-added products, as CO2 conversion serves many natural processes. Enzymatic CO2 reduction in vitro is a very promising route to produce fossil free and bio-based fuel alternatives, such as methanol. In this chapter, the advances in constructing competitive multi-enzymatic systems for the reduction of CO2 to methanol are discussed. Different integrated methods are presented, aiming to address technological challenges, such as the cost effectiveness, need for material regeneration and reuse and improving product yields of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kober T, Schiffer HW, Densing M, Panos E (2020) Global energy perspectives to 2060 – WEC’s World Energy Scenarios 2019. Energy Strategy Rev. 31(December 2019):100523. https://doi.org/10.1016/j.esr.2020.100523

    Article  Google Scholar 

  2. Letcher TM (2021) Global warming—a complex situation. Clim Chang:3–17. https://doi.org/10.1016/b978-0-12-821575-3.00001-3

  3. Hiloidhari M, Baruah DC, Kumari M, Kumari S, Thakur IS (2019) Prospect and potential of biomass power to mitigate climate change: a case study in India. J Clean Prod 220:931–944. https://doi.org/10.1016/j.jclepro.2019.02.194

    Article  Google Scholar 

  4. Schiffer ZJ, Manthiram K (2017) Electrification and decarbonization of the chemical industry. Joule 1(1):10–14. https://doi.org/10.1016/j.joule.2017.07.008

    Article  Google Scholar 

  5. Zhang Z et al (2020) Advances in carbon capture, utilization and storage. Appl Energy 278:115627. https://doi.org/10.1016/j.apenergy.2020.115627

    Article  CAS  Google Scholar 

  6. Bond GM, Stringer J, Brandvold DK, Simsek FA, Medina MG, Egeland G (2000) Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. ACS Div Fuel Chem Prepr 45(4):713–717

    CAS  Google Scholar 

  7. Sivanesan D et al (2017) Enhanced CO2 absorption and desorption in a tertiary amine medium with a carbonic anhydrase mimic. J Ind Eng Chem 52:287–294. https://doi.org/10.1016/j.jiec.2017.03.058

    Article  CAS  Google Scholar 

  8. Sjöblom M et al (2020) Enzyme-assisted CO2 absorption in aqueous amino acid ionic liquid amine blends. ACS Sustain Chem Eng 8(36):13672–13682. https://doi.org/10.1021/acssuschemeng.0c03497

    Article  CAS  Google Scholar 

  9. Shin W, Lee SH, Shin JW, Lee SP, Kim Y (2003) Highly selective electrocatalytic conversion of CO2 to CO at −0.57 V (NHE) by carbon monoxide dehydrogenase from moorella thermoacetica. J Am Chem Soc 125(48):14688–14689. https://doi.org/10.1021/ja037370i

    Article  CAS  PubMed  Google Scholar 

  10. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132(7):2132–2133. https://doi.org/10.1021/ja910091z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu S et al (2020) Light-driven enzymatic nanosystem for highly selective production of formic acid from CO2. Chem Eng J (August):127649. https://doi.org/10.1016/j.cej.2020.127649

  12. Gu FJ, Wang YZ, Meng ZH, Liu WF, Qiu LY (2020) A coupled photocatalytic/enzymatic system for sustainable conversion of CO2 to formate. Catal Commun 136(December 2019):105903. https://doi.org/10.1016/j.catcom.2019.105903

    Article  CAS  Google Scholar 

  13. Ren S et al (2020) Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. Int J Biol Macromol 155:110–118. https://doi.org/10.1016/j.ijbiomac.2020.03.177

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Wen L, Tan T, Lv Y (2019) Sequential co-immobilization of enzymes in metal-organic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate. Front Bioeng Biotechnol 7(December):1–13. https://doi.org/10.3389/fbioe.2019.00394

    Article  Google Scholar 

  15. Shi J, Wang X, Jiang Z, Liang Y, Zhu Y, Zhang C (2012) Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion. Bioresour Technol 118:359–366. https://doi.org/10.1016/j.biortech.2012.04.099

    Article  CAS  PubMed  Google Scholar 

  16. Liu W, Hou Y, Hou B, Zhao Z (2014) Enzyme-catalyzed sequential reduction of carbon dioxide to formaldehyde. Chin J Chem Eng 22(11):1328–1332. https://doi.org/10.1016/j.cjche.2014.09.026

    Article  CAS  Google Scholar 

  17. Nabavi Zadeh PS, Gomes MZDV, Åkerman B, Palmqvist AEC (2018) Förster resonance energy transfer study of the improved biocatalytic conversion of CO2 to formaldehyde by coimmobilization of enzymes in siliceous mesostructured cellular foams. ACS Catal 8(8):7251–7260. https://doi.org/10.1021/acscatal.8b01806

    Article  CAS  Google Scholar 

  18. Yang ZY, Moure VR, Dean DR, Seefeldt LC (2012) Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci U S A 109(48):19644–19648. https://doi.org/10.1073/pnas.1213159109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sultana S, Chandra Sahoo P, Martha S, Parida K (2016) A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv 6(50):44170–44194. https://doi.org/10.1039/c6ra05472b

    Article  CAS  Google Scholar 

  20. Dalena F, Senatore A, Marino A, Gordano A, Basile M, Basile A (2018) Methanol production and applications: an overview. Elsevier B.V., Amsterdam

    Google Scholar 

  21. Zhang N, Long R, Gao C, **ong Y (2018) Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 61(6):771–805. https://doi.org/10.1007/s40843-017-9151-y

    Article  CAS  Google Scholar 

  22. Maia LB, Moura I, Moura JJG (2017) Molybdenum and tungsten-containing formate dehydrogenases: aiming to inspire a catalyst for carbon dioxide utilization. Inorganica Chim Acta 455:350–363. https://doi.org/10.1016/j.ica.2016.07.010

    Article  CAS  Google Scholar 

  23. Fauque GD, Barton LL (2012) Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes, vol 60, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  24. Choe H et al (2014) Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO 2 gas. PLoS One 9(7):14–16. https://doi.org/10.1371/journal.pone.0103111

    Article  CAS  Google Scholar 

  25. Nielsen CF, Lange L, Meyer AS (2019) Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 37(7):107408. https://doi.org/10.1016/j.biotechadv.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  26. Schütte H, Flossdorf J, Sahm H, Kula M-R (1976) Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from candida boidinii. Eur J Biochem 62(1):151–160. https://doi.org/10.1111/j.1432-1033.1976.tb10108.x

    Article  Google Scholar 

  27. Schirwitz K, Schmidt A, Lamzin VS (2007) High-resolution structures of formate dehydrogenase from Candida boidinii. Protein Sci 16(6):1146–1156. https://doi.org/10.1110/ps.062741707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo Q et al (2016) Structural and kinetic studies of formate dehydrogenase from Candida boidinii. Biochemistry 55(19):2760–2771. https://doi.org/10.1021/acs.biochem.6b00181

    Article  CAS  PubMed  Google Scholar 

  29. Harris C, Wang SW, Lauchu JJ, Hansen JM (2003) Methanol metabolism and embryotoxicity in rat and mouse conceptuses: comparisons of alcohol dehydrogenase (ADH1), formaldehyde dehydrogenase (ADH3), and catalase. Reprod Toxicol 17(3):349–357. https://doi.org/10.1016/S0890-6238(03)00013-3

    Article  CAS  PubMed  Google Scholar 

  30. Yang ZN, Bosron WF, Hurley TD (1997) Structure of human χχ alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase. J Mol Biol 265(3):330–343. https://doi.org/10.1006/jmbi.1996.0731

    Article  CAS  PubMed  Google Scholar 

  31. Pourmotabbed T, Creighton DJ (1986) Substrate specificity of bovine liver formaldehyde dehydrogenase. J Biol Chem 261(30):14240–14244. https://doi.org/10.1016/s0021-9258(18)67010-3

    Article  CAS  PubMed  Google Scholar 

  32. Marx CJ, Miller JA, Chistoserdova L, Lidstrom ME (2004) Multiple formaldehyde oxidation/detoxification pathways in burkholderia fungorum LB400. J Bacteriol 186(7):2173–2178. https://doi.org/10.1128/JB.186.7.2173-2178.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gutheil WG, Kasimoglu E, Nicholson PC (1997) Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza. Biochem Biophys Res Commun 238(3):693–696. https://doi.org/10.1016/S0006-291X(00)90000-7

    Article  CAS  PubMed  Google Scholar 

  34. Kato N, Sahm H, Wagner F (1979) Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. BBA Enzymol 566(1):12–20. https://doi.org/10.1016/0005-2744(79)90243-2

    Article  CAS  Google Scholar 

  35. Thompson CM, Ceder R, Grafström RC (2010) Formaldehyde dehydrogenase: beyond phase I metabolism. Toxicol Lett 193(1):1–3. https://doi.org/10.1016/j.toxlet.2009.11.023

    Article  CAS  PubMed  Google Scholar 

  36. Ando M, Yoshtmoto T, Ogushl S, Rikitake K, Shibata S, Tsuru D (1979) Formaldehyde dehydrogenase from Pseudomonas putida: purification and some properties. J Biochem 85(5):1165–1172. https://doi.org/10.1093/oxfordjournals.jbchem.a132440

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka N, Kusakabe Y, Ito K, Yoshimoto T, Nakamura KT (2002) Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases. J Mol Biol 324(3):519–533. https://doi.org/10.1016/S0022-2836(02)01066-5

    Article  CAS  PubMed  Google Scholar 

  38. Persson B, Hedlund J, Jörnvall H (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the MDR superfamily. Cell Mol Life Sci 65(24):3879–3894. https://doi.org/10.1007/s00018-008-8587-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hurley TD, Edenberg H (2012) Gene encoding enzymes in alcohol metabolism. Alcohol Res Curr Rev 34(3):339–344. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756590/pdf/arcr-34-3-339.pdf

    Google Scholar 

  40. Vallee BL, Hoch FL (1955) Zinc, A component of yeast alcohol dehydrogenase. Proceedings of the National Academy of Sciences 41(6):327–338

    Google Scholar 

  41. Wills C (1976) Production of yeast alcohol dehydrogenase isoenzymes by selection. Nature 261(5555):26–29. https://doi.org/10.1038/261026a0

    Article  CAS  PubMed  Google Scholar 

  42. Leskovac V, Trivić S, Peričin D (2002) The three zinc-containing alcohol dehydrogenases from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Res 2(4):481–494. https://doi.org/10.1016/S1567-1356(02)00157-5

    Article  CAS  PubMed  Google Scholar 

  43. Raj SB, Ramaswamy S, Plapp BV (2014) Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 53(36):5791–5803. https://doi.org/10.1021/bi5006442

    Article  CAS  PubMed  Google Scholar 

  44. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8(2). https://doi.org/10.3390/catal8020092

  45. Obert R, Dave BC (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices [5]. J Am Chem Soc 121(51):12192–12193. https://doi.org/10.1021/ja991899r

    Article  CAS  Google Scholar 

  46. Xu SW, Lu Y, Li J, Jiang ZY, Wu H (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Ind Eng Chem Res 45(13):4567–4573. https://doi.org/10.1021/ie051407l

    Article  CAS  Google Scholar 

  47. Sun Q, Jiang Y, Jiang Z, Zhang L, Sun X, Li J (2009) Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania. Ind Eng Chem Res 48(9):4210–4215. https://doi.org/10.1021/ie801931j

    Article  CAS  Google Scholar 

  48. Wang X et al (2014) Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction. ACS Catal 4(3):962–972. https://doi.org/10.1021/cs401096c

    Article  CAS  Google Scholar 

  49. Jiang Y, Sun Q, Zhang L, Jiang Z (2009) Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system. J Mater Chem 19(47):9068–9074. https://doi.org/10.1039/b914268a

    Article  CAS  Google Scholar 

  50. Luo J, Meyer AS, Mateiu RV, Pinelo M (2015) Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnol 32(3):319–327. https://doi.org/10.1016/j.nbt.2015.02.006

    Article  CAS  Google Scholar 

  51. Ji X, Su Z, Ma G, Zhang S (2018) Sandwiching multiple dehydrogenases and shared cofactor between double polyelectrolytes for enhanced communication of cofactor and enzymes. Biochem Eng J 137:40–49. https://doi.org/10.1016/j.bej.2018.05.017

    Article  CAS  Google Scholar 

  52. El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng 99(3):508–514. https://doi.org/10.1002/bit.21584

    Article  CAS  PubMed  Google Scholar 

  53. Ji X, Su Z, Wang P, Ma G, Zhang S (2015) Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano 9(4):4600–4610. https://doi.org/10.1021/acsnano.5b01278

    Article  CAS  PubMed  Google Scholar 

  54. Marques Netto CGC, Andrade LH, Toma HE (2018) Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles. An Acad Bras Cienc 90(1):593–606. https://doi.org/10.1590/0001-3765201720170330

    Article  CAS  Google Scholar 

  55. Zhu D et al (2019) Ordered coimmobilization of a multienzyme cascade system with a metal organic framework in a membrane: reduction of CO2 to methanol. ACS Appl Mater Interfaces 11(37):33581–33588. https://doi.org/10.1021/acsami.9b09811

    Article  CAS  PubMed  Google Scholar 

  56. Cazelles R, Drone J, Fajula F, Ersen O, Moldovan S, Galarneau A (2013) Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids-silica nanocapsules. New J Chem 37(11):3721–3730. https://doi.org/10.1039/c3nj00688c

    Article  CAS  Google Scholar 

  57. Singh RK et al (2018) Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction. ACS Catal 8(12):11085–11093. https://doi.org/10.1021/acscatal.8b02646

    Article  CAS  Google Scholar 

  58. Zhang Z et al (2018) Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chem 20(18):4339–4348. https://doi.org/10.1039/c8gc02230e

    Article  CAS  Google Scholar 

  59. Lee SH, Choi DS, Kuk SK, Park CB (2018) Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int Ed. 57(27):7958–7985. https://doi.org/10.1002/anie.201710070

    Article  CAS  Google Scholar 

  60. Dibenedetto A et al (2012) Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5(2):373–378. https://doi.org/10.1002/cssc.201100484

    Article  CAS  PubMed  Google Scholar 

  61. Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic/enzymatic system for the reduction of CO2 to methanol in bioglycerol-water. Beilstein J Org Chem 10:2556–2565. https://doi.org/10.3762/bjoc.10.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yadav RK, Oh GH, Park NJ, Kumar A, Kong KJ, Baeg JO (2014) Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. J Am Chem Soc 136(48):16728–16731. https://doi.org/10.1021/ja509650r

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Cazelles R, Chen ZP, Zhou H, Galarneau A, Antonietti M (2014) The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Phys Chem Chem Phys 16(28):14699–14705. https://doi.org/10.1039/c4cp01348d

    Article  CAS  PubMed  Google Scholar 

  64. Ji X, Su Z, Wang P, Ma G, Zhang S (2016) Integration of artificial photosynthesis system for enhanced electronic energy-transfer efficacy: a case study for solar-energy driven bioconversion of carbon dioxide to methanol. Small 12(34):4753–4762. https://doi.org/10.1002/smll.201600707

    Article  CAS  PubMed  Google Scholar 

  65. Wu R, Ma C, Zhu Z (2020) Enzymatic electrosynthesis as an emerging electrochemical synthesis platform. Curr Opin Electrochem 19:1–7. https://doi.org/10.1016/j.coelec.2019.08.004

    Article  CAS  Google Scholar 

  66. Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO 2. Cat Sci Technol 2(1):19–28. https://doi.org/10.1039/c1cy00314c

    Article  CAS  Google Scholar 

  67. Schlager S et al (2017) Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol 5(6):812–821. https://doi.org/10.1002/ente.201600610

    Article  CAS  Google Scholar 

  68. Schlager S, Fuchsbauer A, Haberbauer M, Neugebauer H, Sariciftci NS (2017) Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes. J Mater Chem A 5(6):2429–2443. https://doi.org/10.1039/c6ta07571a

    Article  CAS  Google Scholar 

  69. Kuwabata S, Tsuda R, Yoneyama H (1994) Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts. J Am Chem Soc 116(12):5437–5443. https://doi.org/10.1021/ja00091a056

    Article  CAS  Google Scholar 

  70. Addo PK, Arechederra RL, Waheed A, Shoemaker JD, Sly WS, Minteer SD (2011) Methanol production via bioelectrocatalytic reduction of carbon dioxide: role of carbonic anhydrase in improving electrode performance. Electrochem Solid-State Lett 14(4):5–10. https://doi.org/10.1149/1.3537463

    Article  CAS  Google Scholar 

  71. Zhang Z et al (2021) Encapsulation of multiple enzymes in a metal-organic framework with enhanced electro-enzymatic reduction of CO2 to methanol. Green Chem 23(6):2362–2371. https://doi.org/10.1039/d1gc00241d

    Article  CAS  Google Scholar 

  72. Schlager S et al (2016) Electrochemical reduction of carbon dioxide to methanol by direct injection of electrons into immobilized enzymes on a modified electrode. ChemSusChem 9(6):631–635. https://doi.org/10.1002/cssc.201501496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551. https://doi.org/10.1021/ja1023496

    Article  CAS  Google Scholar 

  74. Kuk SK, Singh RK, Nam DH, Singh R, Lee JK, Park CB (2017) Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew Chem Int Ed 56(14):3827–3832. https://doi.org/10.1002/anie.201611379

    Article  CAS  Google Scholar 

  75. Windle CD, Perutz RN (2012) Advances in molecular photocatalytic and electrocatalytic CO 2 reduction. Coord Chem Rev 256(21–22):2562–2570. https://doi.org/10.1016/j.ccr.2012.03.010

    Article  CAS  Google Scholar 

  76. Marpani F, Pinelo M, Meyer AS (2017) Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: quantitative comparison of efficiencies of immobilized enzyme systems. Biochem Eng J 127:217–228. https://doi.org/10.1016/j.bej.2017.08.011

    Article  CAS  Google Scholar 

  77. Effendi SSW, Ng IS (2019) The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: a critical review. Process Biochem. 87(July):55–65. https://doi.org/10.1016/j.procbio.2019.08.018

    Article  CAS  Google Scholar 

  78. Kanth BK, Lee J, Pack SP (2013) Carbonic anhydrase: its biocatalytic mechanisms and functional properties for efficient CO2 capture process development. Eng Life Sci 13(5):422–431. https://doi.org/10.1002/elsc.201200157

    Article  CAS  Google Scholar 

  79. Russo ME, Olivieri G, Marzocchella A, Salatino P, Caramuscio P, Cavaleiro C (2013) Post-combustion carbon capture mediated by carbonic anhydrase. Sep Purif Technol 107:331–339. https://doi.org/10.1016/j.seppur.2012.06.022

    Article  CAS  Google Scholar 

  80. Kupriyanova E, Pronina N, Los D (2017) Carbonic anhydrase — a universal enzyme of the carbon-based life. Photosynthetica 55(1):3–19. https://doi.org/10.1007/s11099-017-0685-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Io Antonopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Antonopoulou, I., Rova, U., Christakopoulos, P. (2022). CO2 to Methanol: A Highly Efficient Enzyme Cascade. In: Stamatis, H. (eds) Multienzymatic Assemblies. Methods in Molecular Biology, vol 2487. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2269-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2269-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2268-1

  • Online ISBN: 978-1-0716-2269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation