Defined Engineered Human Myocardium for Disease Modeling, Drug Screening, and Heart Repair

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2485))

Abstract

Different engineered heart muscle formats have been developed for applications in disease modeling, drug screening, and heart repair. The advantage of 3D engineered versus 2D monolayer and 3D aggregate cardiomyocyte cultures is a clearly advanced degree of maturation, which in many aspects resembles the postnatal rather than the embryonic or fetal heart, in the most advanced 3D culture formats. According to the desired in vitro (disease modeling or drug screening) and in vivo (heart repair) application, scale and geometry of tissue engineered heart muscle must be adapted. In this updated methods paper, we report a simple and scalable (up and down) collagen-based protocol for the construction of Engineered Human Myocardium (EHM) under defined, serum-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114

    Article  CAS  Google Scholar 

  2. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    Article  CAS  Google Scholar 

  3. Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J, Skvorc D, Gawol A, Azizian A, Wagner S et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146

    Article  CAS  Google Scholar 

  4. Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T et al (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6:e26397

    Article  CAS  Google Scholar 

  5. Soong PL, Tiburcy M, Zimmermann WH (2012) Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle. Curr Protoc Cell Biol Chapter 23(Unit23):28

    Google Scholar 

  6. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109:47–59

    Article  CAS  Google Scholar 

  7. Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E et al (2017) Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135:1832–1847

    Article  CAS  Google Scholar 

  8. Hanses U, Kleinsorge M, Roos L, Yigit G, Li Y, Barbarics B, El-Battrawy I, Lan H, Tiburcy M, Hindmarsh R et al (2020) Intronic CRISPR repair in a preclinical model of noonan syndrome-associated cardiomyopathy. Circulation 142(11):1059–1076

    Article  CAS  Google Scholar 

  9. Mills RJ, Parker BL, Quaife-Ryan GA, Voges HK, Needham EJ, Bornot A, Ding M, Andersson H, Polla M, Elliott DA et al (2019) Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24(895–907):e896

    Google Scholar 

  10. Riegler J, Tiburcy M, Ebert A, Tzatzalos E, Raaz U, Abilez OJ, Shen Q, Kooreman NG, Neofytou E, Chen VC et al (2015) Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ Res 117:720–730

    Article  CAS  Google Scholar 

  11. Sasaki D, Matsuura K, Seta H, Haraguchi Y, Okano T, Shimizu T (2018) Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue. PLoS One 13:e0198026

    Article  Google Scholar 

  12. Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP et al (2020) Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26(862–879):e811

    Google Scholar 

  13. Pointon A, Pilling J, Dorval T, Wang Y, Archer C, Pollard C (2017) From the cover: high-throughput imaging of cardiac microtissues for the assessment of cardiac contraction during drug discovery. Toxicol Sci 155:444–457

    Article  CAS  Google Scholar 

  14. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, **ao Y, Zhang B, Jiang J, Masse S, Gagliardi M, Hsieh A et al (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10:781–787

    Article  CAS  Google Scholar 

  15. Zhang D, Shadrin IY, Lam J, **an HQ, Snodgrass HR, Bursac N (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34:5813–5820

    Article  CAS  Google Scholar 

  16. Munarin F, Kaiser NJ, Kim TY, Choi BR, Coulombe KLK (2017) Laser-etched designs for molding hydrogel-based engineered tissues. Tissue Eng Part C Methods 23:311–321

    Article  CAS  Google Scholar 

  17. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:239–243

    Article  CAS  Google Scholar 

  18. Naito H, Melnychenko I, Didie M, Schneiderbanger K, Schubert P, Rosenkranz S, Eschenhagen T, Zimmermann WH (2006) Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114:I72–I78

    Article  Google Scholar 

  19. Kreutziger KL, Muskheli V, Johnson P, Braun K, Wight TN, Murry CE (2011) Develo** vasculature and stroma in engineered human myocardium. Tissue Eng A 17:1219–1228

    Article  CAS  Google Scholar 

  20. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17:341–359

    Article  Google Scholar 

  21. Liaw NY, Zimmermann WH (2016) Mechanical stimulation in the engineering of heart muscle. Adv Drug Deliv Rev 96:156–160

    Article  CAS  Google Scholar 

  22. Tiburcy M, Meyer T, Liaw NY, Zimmermann WH (2020) Generation of engineered human myocardium in a multi-well format. STAR Protoc 1:100032

    Article  Google Scholar 

  23. Schlick SF, Spreckelsen F, Tiburcy M, Iyer LM, Meyer T, Zelarayan LC, Luther S, Parlitz U, Zimmermann WH, Rehfeldt F (2019) Agonistic and antagonistic roles of fibroblasts and cardiomyocytes on viscoelastic stiffening of engineered human myocardium. Prog Biophys Mol Biol 144:51–60

    Article  CAS  Google Scholar 

  24. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    Article  CAS  Google Scholar 

  25. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28

    Article  CAS  Google Scholar 

  26. Zimmermann WH (2021) Engineered heart muscle Models in phenotypic drug screens. Handb Exp Pharmacol 265:143–156. https://doi.org/10.1007/164_2020_385. PMID: 33136187

  27. Cyganek L, Tiburcy M, Sekeres K, Gerstenberg K, Bohnenberger H, Lenz C, Henze S, Stauske M, Salinas G, Zimmermann WH, Hasenfuss G, Guan K (2018) Deep phenoty** of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight 3(12):e99941. https://doi.org/10.1172/jci.insight.99941. PMID: 29925689; PMCID: PMC6124434

Download references

Acknowledgments

M.T. is supported by the German Research Foundation (DFG TI 956/1-1, SFB 1002 C04). T.M. is supported by the DZHK (German Center for Cardiovascular Research; Shared Expertise Funding Scheme). P.L.S. is a member of DFG IRTG 1816. W.H.Z. is supported by the DZHK, the Leducq Foundation, the German Ministry for Science and Education (BMBF - IndiHeart), and the German Research Foundation (DFG SFB 1002 C04 and S01, IRTG 1816, MBExC - EXC 2067/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram-Hubertus Zimmermann .

Editor information

Editors and Affiliations

Ethics declarations

M.T., T.M., and W.H.Z. are listed as inventors of several granted and pending patent applications in the field of stem cell differentiation, tissue engineering, and tool development. The University Medical Center Göttingen has licensed related IP to myriamed GmbH and Repairon GmbH. W.H.Z. is founder and advisor of myriamed GmbH (active in drug screening) and Repairon GmbH (active in the clinical translation of tissue engineered heart repair). M.T. and T.M. are advisors of myriamed GmbH and Repairon GmbH.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tiburcy, M., Meyer, T., Satin, PL., Zimmermann, WH. (2022). Defined Engineered Human Myocardium for Disease Modeling, Drug Screening, and Heart Repair. In: Coulombe, K.L., Black III, L.D. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 2485. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2261-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2261-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2260-5

  • Online ISBN: 978-1-0716-2261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation