Single-Molecule Narrow-Field Microscopy of Protein-DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2476))

Abstract

Single-molecule narrow-field microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain subcellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyze these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose-mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single-molecule problem—a single repressor protein binding a single binding site in the genome can dramatically alter behavior at the whole cell and population levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wollman AJMM, Miller H, Zhaokun Z et al (2015) Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 43:139–145

    Article  CAS  Google Scholar 

  2. Lenn T, Leake MC, Mullineaux CW (2008) Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane? Biochem Soc Trans 36:1032–1036

    Article  CAS  Google Scholar 

  3. Plank M, Wadhams GH, Leake MC (2009) Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr Biol (Camb) 1:602–612

    Article  CAS  Google Scholar 

  4. Chiu S-W, Leake MC (2011) Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 12:2518–2542

    Article  CAS  Google Scholar 

  5. Robson A, Burrage K, Leake MC (2013) Inferring diffusion in single live cells at the single-molecule level. Philos Trans R Soc Lond Ser B Biol Sci 368:20120029

    Article  Google Scholar 

  6. Bryan SJ, Burroughs NJ, Shevela D et al (2014) Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol Microbiol 94:1179–1195

    Article  CAS  Google Scholar 

  7. Llorente-Garcia I, Lenn T, Erhardt H et al (2014) Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim Biophys Acta 1837:811–824

    Article  CAS  Google Scholar 

  8. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328:498–501

    Article  CAS  Google Scholar 

  9. Badrinarayanan A, Reyes-Lamothe R, Uphoff S et al (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338:528–531

    Article  CAS  Google Scholar 

  10. Stracy M, Wollman AJM, Kaja E et al (2019) Single-molecule imaging of DNA gyrase activity in living Escherichia coli. Nucleic Acids Res 47:210–220

    Article  CAS  Google Scholar 

  11. Syeda AH, Wollman AJM, Hargreaves AL et al (2019) Single-molecule live cell imaging of Rep reveals the dynamic interplay between an accessory replicative helicase and the replisome. Nucleic Acids Res 47:6287–6298

    Article  CAS  Google Scholar 

  12. Sun Y, Wollman AJM, Huang F et al (2019) Single-organelle quantification reveals stoichiometric and structural variability of carboxysomes dependent on the environment. Plant Cell 31:1648–1664

    Article  CAS  Google Scholar 

  13. Wollman AJM, Nudd R, Hedlund EG et al (2015) From Animaculum to single molecules: 300 years of the light microscope. Open Biol 5:150,019

    Article  Google Scholar 

  14. Lundin M, Nehlin JO, Ronne H (1994) Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14:1979–1985

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nehlin JO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373–3377

    Article  CAS  Google Scholar 

  16. Klein CJL, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. http://www.ncbi.nlm.nih.gov/pubmed/9467897

  17. Ghillebert R, Swinnen E, Wen J et al (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990

    Article  CAS  Google Scholar 

  18. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    Article  Google Scholar 

  19. De VMJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618

    Article  Google Scholar 

  20. Bendrioua L, Smedh M, Almquist J et al (2014) Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 289:12,863–12,875

    Article  CAS  Google Scholar 

  21. Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92:3132–3136

    Article  CAS  Google Scholar 

  22. Smith FC, Davies SP, Wilson WA et al (1999) The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett 453:219–223

    Article  CAS  Google Scholar 

  23. Ostling J, Carlberg M, Ronne H (1996) Functional domains in the Mig1 repressor. Mol Cell Biol 16:753–761

    Article  CAS  Google Scholar 

  24. Ostling J, Ronne H (1998) Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur J Biochem 252:162–168

    Article  CAS  Google Scholar 

  25. Frolova E (1999) Binding of the glucose-dependent Mig1p repressor to the GAL1 and GAL4 promoters in vivo: regulation by glucose and chromatin structure. Nucleic Acids Res 27:1350–1358

    Article  CAS  Google Scholar 

  26. DeVit MJ, Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9:1231–1241

    Article  CAS  Google Scholar 

  27. Wollman AJMJM, Leake MCC (2015) Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Faraday Discuss 184:401–424

    Article  CAS  Google Scholar 

  28. Wollman AJ, Shashkova S, Hedlund EG et al (2017) Transcription factor clusters regulate genes in eukaryotic cells. elife 6:e27451

    Article  Google Scholar 

  29. Cho WK, Spille JH, Hecht M et al (2018) Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science (80-) 361:412–415

    Article  CAS  Google Scholar 

  30. Chong S, Dugast-Darzacq C, Liu Z et al (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science (80-) 361:eaar2555

    Article  Google Scholar 

  31. Sabari BR, Dall’Agnese A, Boija A et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science (80-) 361:eaar3958

    Article  Google Scholar 

  32. Wollman AJM, Hedlund EG, Shashkova S et al (2020) Towards map** the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells. Methods 170:82–89

    Article  CAS  Google Scholar 

  33. Shashkova S, Nyström T, Leake MC et al (2021) Correlative single-molecule fluorescence barcoding of gene regulation in Saccharomyces cerevisiae. Methods 193:62–67

    Article  CAS  Google Scholar 

  34. Miller H, Zhou Z, Wollman AJM et al (2015) Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods 88:81–88

    Article  CAS  Google Scholar 

  35. Shepherd JW, Higgins EJ, Wollman AJM et al (2021) PySTACHIO: Python Single-molecule TrAcking stoiCHiometry Intensity and simulatiOn, a flexible, extensible, beginner-friendly and optimized program for analysis of single-molecule microscopy data. Comput Struct Biotechnol J 19:2021.03.18.435952

    Article  Google Scholar 

  36. Edelstein A, Amodaj N, Hoover K, et al (2010) Computer control of microscopes using manager, /pmc/articles/PMC3065365/

    Google Scholar 

Download references

Acknowledgments

We thank Sviatlana Shashkova and Stefan Hohmann (University of Gothenburg, Sweden) for donation of yeast cell strains and assistance with yeast cell culturing. MCL was assisted by a Royal Society URF and research funds from the Biological Physical Sciences Institute (BPSI) of the University of York, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. M. Wollman .

Editor information

Editors and Affiliations

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wollman, A.J.M., Leake, M.C. (2022). Single-Molecule Narrow-Field Microscopy of Protein-DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells. In: Leake, M.C. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 2476. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2221-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2221-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2220-9

  • Online ISBN: 978-1-0716-2221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation