Visualizing the Replisome, Chromosome Breaks, and Replication Restart in Bacillus subtilis

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2476))

  • 1014 Accesses

Abstract

Research over the last two decades has revealed that bacterial genomes are highly organized and that bacteria have sophisticated mechanisms in place to ensure their correct replication and segregation into progeny cells. Here we discuss techniques that can be used with live bacterial cells to analyze DNA replisome dynamics, double-strand chromosome breaks, and restart of repaired replication forks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang W et al. (2005) The Bacillus subtilis DnaD and DnaB proteins exhibit different DNA remodelling activities. J Mol Biol 351(1):66–75

    Google Scholar 

  2. Bailey S, Eliason WK, Steitz TA (2007) Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318(5849):459–463

    Article  CAS  Google Scholar 

  3. Smits WK, Goranov AI, Grossman AD (2010) Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 75(2):452–461

    Article  CAS  Google Scholar 

  4. Mott ML, Berger JM (2007) DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5:343

    Article  CAS  Google Scholar 

  5. Köhler P, Marahiel MA (1997) Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J Bacteriol 179(6):2060

    Article  Google Scholar 

  6. Marbouty M et al. (2015) Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59(4):588–602

    Google Scholar 

  7. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328(5977):498–501

    Article  CAS  Google Scholar 

  8. Su’etsugu M, Errington J (2011) The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells. Mol Cell 41(6):720–732

    Article  Google Scholar 

  9. Badrinarayanan A, Le TBK, Laub MT (2015) Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. J Cell Biol 210(3):385–400

    Article  CAS  Google Scholar 

  10. Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci 98(15):8241

    Article  CAS  Google Scholar 

  11. Lenhart JS et al. (2012) DNA Repair and Genome Maintenance in

    Google Scholar 

  12. Yeeles JTP, Dillingham MS (2010) The processing of double-stranded DNA breaks for recombinational repair by helicase–nuclease complexes. 9(3):276–285

    Google Scholar 

  13. Lovett CM, Roberts JW (1985) Purification of a RecA protein analogue from Bacillus subtilis. J Biol Chem 260(6):3305–3313

    Article  CAS  Google Scholar 

  14. Marsin S et al. (2001) Early steps of Bacillus subtilis primosome assembly. J Biol Chem 276(49):45818–45825

    Google Scholar 

  15. Cheo DL, Bayles KW, Yasbin RE (1991) Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J Bacteriol 173(5):1696–1703

    Article  CAS  Google Scholar 

  16. Groban ES et al. (2005) Binding of the Bacillus subtilis LexA protein to the SOS operator. Nucleic Acids Res 33(19):6287–6295

    Google Scholar 

  17. Goranov AI et al. (2006) Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. J Bacteriol 188(15):5595–5605

    Google Scholar 

  18. Kawai Y, Moriya S, Ogasawara N (2003) Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 47(4):1113–1122

    Article  CAS  Google Scholar 

  19. Gozzi K et al. (2017) Bacillus subtilis utilizes the DNA damage response to manage multicellular development. NPJ Biofilms Microbio 3:8–8

    Google Scholar 

  20. Shee C et al. (2013) Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. eLife 2:e01222

    Google Scholar 

  21. d’Adda di Fagagna F et al. (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198

    Google Scholar 

  22. Williams JG, Radding CM (1981) Partial purification and properties of an exonuclease inhibitor induced by bacteriophage Mu-1. J Virol 39(2):548

    Article  CAS  Google Scholar 

  23. Abraham ZH, Symonds N (1990) Purification of overexpressed gam gene protein from bacteriophage Mu by denaturation-renaturation techniques and a study of its DNA-binding properties. Biochem J 269(3):679–684

    Article  CAS  Google Scholar 

  24. Michel B, Sinha AK, Leach DRF (2018) Replication Fork breakage and restart in Escherichia coli. Microbiol Mol Biol Rev: MMBR 82(3):e00013–e00018

    Article  CAS  Google Scholar 

  25. Gruber S, Errington J (2009) Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137(4):685–696

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heath Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaimster, H., Winterhalter, C., Koh, A., Murray, H. (2022). Visualizing the Replisome, Chromosome Breaks, and Replication Restart in Bacillus subtilis. In: Leake, M.C. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 2476. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2221-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2221-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2220-9

  • Online ISBN: 978-1-0716-2221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation