Imaging of Extracellular Vesicles Derived from Plasmodium falciparum–Infected Red Blood Cells Using Atomic Force Microscopy

  • Protocol
  • First Online:
Malaria Immunology

Abstract

Malaria is one the most devastating infectious diseases in the world: of the five malaria-associated parasites, Plasmodium falciparum and P. vivax are the most pathogenic and widespread, respectively. P. falciparum invades human red blood cells (RBCs), releasing extracellular vesicles (Pf-EV) carrying DNA, RNA and protein cargo components involved in host-pathogen communications in the course of the disease. Different strategies have been used to analyze Pf-EV biophysically and chemically. Atomic force microscopy (AFM) stands out as a powerful tool for rendering high quality images of extracellular vesicles. In this technique, a sharp tip attached to a cantilever reconstructs the topographic surface of the extracellular vesicles and probes their nano-mechanical properties based on force–distance curves. Here, we describe a method to separate Pf-EV using differential ultracentrifugation, followed by nanoparticle tracking analysis (NTA) to quantify and estimate the size distribution. Finally, the AFM imaging procedure on Pf-EV adsorbed on a Mg2+-modified mica surface is detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Hur S, Biton M, Regev-Rudzki N (2018) Extracellular vesicles: a prevalent tool for microbial gene delivery? Proteomics 19:e1800170

    Article  Google Scholar 

  2. Ofir-Birin Y, Regev-Rudzki N (2019) Extracellular vesicles in parasite survival. Science 363:817–818

    Article  CAS  Google Scholar 

  3. Rivkin A, Ben-Hur S, Regev-Rudzki N (2017) Malaria parasites distribute subversive messages across enemy lines. Trends Parasitol 33:2–4

    Article  Google Scholar 

  4. Babatunde KA, Yesodha Subramanian B, Ahouidi AD et al (2020) Role of extracellular vesicles in cellular cross talk in malaria. Front Immunol 11:22

    Article  CAS  Google Scholar 

  5. Toda H, Diaz-Varela M, Segui-Barber J et al (2020) Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence. Nat Commun 11:2761

    Article  CAS  Google Scholar 

  6. Demarta-Gatsi C, Rivkin A, Di Bartolo V et al (2019) Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses. Cell Microbiol 21:e13021

    Article  Google Scholar 

  7. Regev-Rudzki N, Wilson DW, Carvalho TG et al (2013) Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153:1120–1133

    Article  CAS  Google Scholar 

  8. Dekel E, Yaffe D, Rosenhek-Goldian I et al (2021) 20S proteasomes secreted by the malaria parasite promote its growth. Nat Commun 12:1172

    Article  CAS  Google Scholar 

  9. Mantel PY, Hoang AN, Goldowitz I et al (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13:521–534

    Article  CAS  Google Scholar 

  10. Sisquella X, Ofir-Birin Y, Pimentel MA et al (2017) Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat Commun 8:1985

    Article  Google Scholar 

  11. Mantel PY, Hjelmqvist D, Walch M et al (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun 7:12727

    Article  CAS  Google Scholar 

  12. Antwi-Baffour S, Malibha-Pinchbeck M, Stratton D et al (2020) Plasma mEV levels in Ghanain malaria patients with low parasitaemia are higher than those of healthy controls, raising the potential for parasite markers in mEVs as diagnostic targets. J Extracell Vesicles 9:1697124

    Article  CAS  Google Scholar 

  13. Dekel E, Rivkin A, Heidenreich M et al (2017) Identification and classification of the malaria parasite blood developmental stages, using imaging flow cytometry. Methods 112:157–166

    Article  CAS  Google Scholar 

  14. Ofir-Birin Y, Abou Karam P, Rudik A et al (2018) Monitoring extracellular vesicle cargo active uptake by imaging flow cytometry. Front Immunol 9:1011

    Article  Google Scholar 

  15. Ketprasit N, Cheng IS, Deutsch F et al (2020) The characterization of extracellular vesicles-derived microRNAs in Thai malaria patients. Malar J 19:285

    Article  CAS  Google Scholar 

  16. Thery C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

    Article  Google Scholar 

  17. Radfar A, Mendez D, Moneriz C et al (2009) Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc 4:1899–1915

    Article  CAS  Google Scholar 

  18. Rupert DLM, Claudio V, Lasser C et al (2017) Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta Gen Subj 1861:3164–3179

    Article  CAS  Google Scholar 

  19. Hartjes TA, Mytnyk S, Jenster GW et al (2019) Extracellular vesicle quantification and characterization: common methods and emerging approaches. Bioengineering (Basel) 6:7

    Article  CAS  Google Scholar 

  20. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  Google Scholar 

  21. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104

    Article  CAS  Google Scholar 

  22. Quintanilla MAS (2013) Surface analysis using contact mode AFM. In: Wang QJ, Chung Y-W (eds) Encyclopedia of tribology. Springer, Boston, MA, pp 3401–3411

    Chapter  Google Scholar 

  23. Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69:264–270

    Article  CAS  Google Scholar 

  24. Elings VB, Gurley JA (1995) Tap** atomic force microscope. Digital Instruments, Inc, Santa Barbara, CA

    Google Scholar 

  25. Xu K, Sun W, Shao Y et al (2018) Recent development of PeakForce Tap** mode atomic force microscopy and its applications on nanoscience. Nanotechnol Rev 7:605–621

    Article  CAS  Google Scholar 

  26. Vorselen D, van Dommelen SM, Sorkin R et al (2018) The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat Commun 9:4960

    Article  Google Scholar 

  27. Sorkin R, Huisjes R, Boskovic F et al (2018) Nanomechanics of extracellular vesicles reveals vesiculation pathways. Small 14:e1801650

    Article  Google Scholar 

  28. Parisse P, Rago I, Ulloa Severino L et al (2017) Atomic force microscopy analysis of extracellular vesicles. Eur Biophys J 46:813–820

    Article  CAS  Google Scholar 

  29. Hölscher H (2012) AFM, tap** mode. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 99–99

    Google Scholar 

  30. Zhong Q, Inniss D, Kjoller K et al (1993) Fractured polymer/silica fiber surface studied by tap** mode atomic force microscopy. Surf Sci 290:L688–L692

    Article  CAS  Google Scholar 

  31. Kamruzzahan ASM, Kienberger F, Stroh CM et al (2004) Imaging morphological details and pathological differences of red blood cells using tap**-mode AFM. Biol Chem 385:955–960

    Article  CAS  Google Scholar 

  32. Sorkin R, Kampf N, Dror Y et al (2013) Origins of extreme boundary lubrication by phosphatidylcholine liposomes. Biomaterials 34:5465–5475

    Article  CAS  Google Scholar 

  33. Magonov SN, Elings V, Whangbo MH (1997) Phase imaging and stiffness in tap**-mode atomic force microscopy. Surf Sci 375:L385–L391

    Article  CAS  Google Scholar 

  34. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  35. Rosenhek-Goldian I, Cohen S (2020) Nanomechanics of biomaterials - from cells to shells. Israel J Chem 60:1–15

    Article  Google Scholar 

  36. Deregibus MC, Figliolini F, D’antico S et al (2016) Charge-based precipitation of extracellular vesicles. Int J Mol Med 38:1359–1366

    Article  CAS  Google Scholar 

  37. Raval J, Góźdź WT (2020) Shape transformations of vesicles induced by their adhesion to flat surfaces. ACS Omega 5:16099–16105

    Article  CAS  Google Scholar 

  38. Chang K-C, Chiang Y-W, Yang C-H et al (2012) Atomic force microscopy in biology and biomedicine. Tzu Chi Med J 24:162–169

    Article  Google Scholar 

  39. Stylianou A, Kontomaris S-V, Grant C et al (2019) Atomic force microscopy on biological materials related to pathological conditions. Scanning 2019:8452851

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate Dr. Sidney R. Cohen for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rosenhek-Goldian, I., Abou Karam, P., Regev-Rudzki, N., Rojas, A. (2022). Imaging of Extracellular Vesicles Derived from Plasmodium falciparum–Infected Red Blood Cells Using Atomic Force Microscopy. In: Jensen, A.T.R., Hviid, L. (eds) Malaria Immunology. Methods in Molecular Biology, vol 2470. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2189-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2189-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2188-2

  • Online ISBN: 978-1-0716-2189-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation