Screening of ABA Transporters by a Yeast Two-Hybrid System-Based Screening Using the Receptor Complex as a Sensor

  • Protocol
  • First Online:
Abscisic Acid

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2462))

Abstract

Abscisic acid (ABA) is a plant hormone that is involved in many physiological events and is present in most plant tissues. How ABA moves within plants has not been well understood. To characterize the physiological consequences as well as the underlying molecular events responsible for ABA movement, it is crucial to identify the transporter proteins. Several approaches have been successful in identifying ABA transporters. In this chapter, we outline a methodology to directly identify proteins capable of transporting ABA in a heterologous yeast system. In our assay, the ABA receptor [PYRABACTIN RESISTANCE1 (PYR1) and PYR1-LIKE (PYL), also known as REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR)] and the protein phosphatases of type 2C (PP2C) coreceptor interact in an ABA-dependent manner. A yeast two-hybrid (Y2H) system is used to monitor interactions between the receptor and PP2C and, hence, the ABA concentration in the yeast cells. Screening cDNAs that induce or inhibit the receptor–PP2C interaction in the presence of ABA allows us to identify candidate transporters. ABA transport activities of the putative transporter proteins can be validated by quantifying hormone levels in the yeast cells using liquid chromatography tandem-mass spectrometry (LC-MS/MS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 154.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 219.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20(2):55–67. https://doi.org/10.1017/S0960258510000012

    Article  CAS  Google Scholar 

  2. Zhang JH, Jia WS, Yang JC, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97(1):111–119. https://doi.org/10.1016/j.fcr.2005.08.018

    Article  Google Scholar 

  3. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317. https://doi.org/10.1016/j.tplants.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez PL, Lozano-Juste J, Albert A (2019) PYR/PYL/RCAR ABA receptors. In: Seo M, Marion-Poll A (eds) Abscisic acid in plants, Advances in botanical research, vol 92. Academic Press, London, pp 51–82. https://doi.org/10.1016/bs.abr.2019.05.003

    Chapter  Google Scholar 

  5. Seo M, Marion-Poll A (2019) Abscisic acid metabolism and transport. In: Seo M, Marion-Poll A (eds) Abscisic acid in plants, Advances in botanical research, vol 92. Academic Press, London, pp 1–49. https://doi.org/10.1016/bs.abr.2019.04.004

    Chapter  Google Scholar 

  6. Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23(6):513–522. https://doi.org/10.1016/j.tplants.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  7. Krattinger SG, Kang J, Braunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B (2019) Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol 223(2):853–866. https://doi.org/10.1111/nph.15815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pawela A, Banasiak J, Biala W, Martinoia E, Jasinski M (2019) MtABCG20 is an ABA exporter influencing root morphology and seed germination of Medicago truncatula. Plant J 98(3):511–523. https://doi.org/10.1111/tpj.14234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu X, Liu H, Hassani D, Peng B, Yan X, Wang Y, Wang C, Li L, Liu P, Pan Q, Zhao J, Qian H, Sun X, Tang K (2020) AaABCG40 enhances artemisinin content and modulates drought tolerance in Artemisia annua. Front Plant Sci 11(950):950. https://doi.org/10.3389/fpls.2020.00950

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuromori T, Sugimoto E, Shinozaki K (2021) Brachypodium BdABCG25 is a homolog of Arabidopsis AtABCG25 involved in the transport of abscisic acid. FEBS Lett 595(7):954–959. https://doi.org/10.1002/1873-3468.13925

    Article  CAS  PubMed  Google Scholar 

  11. Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A 109(24):9653–9658. https://doi.org/10.1073/pnas.1203567109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shohat H, Illouz-Eliaz N, Kanno Y, Seo M, Weiss D (2020) The tomato DELLA protein PROCERA promotes abscisic acid responses in guard cells by upregulating an abscisic acid transporter. Plant Physiol 184(1):518–528. https://doi.org/10.1104/pp.20.00485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7(10):1522–1532. https://doi.org/10.1093/mp/ssu063

    Article  CAS  PubMed  Google Scholar 

  14. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071. https://doi.org/10.1126/science.1173041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068. https://doi.org/10.1126/science.1172408

    Article  CAS  PubMed  Google Scholar 

  16. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106(41):17588–17593. https://doi.org/10.1073/pnas.0907095106

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346. https://doi.org/10.1007/BF00330984

    Article  CAS  PubMed  Google Scholar 

  18. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107(5):2361–2366. https://doi.org/10.1073/pnas.0912516107

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107(5):2355–2360. https://doi.org/10.1073/pnas.0909222107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsunori Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watanabe, S., Kanno, Y., Seo, M. (2022). Screening of ABA Transporters by a Yeast Two-Hybrid System-Based Screening Using the Receptor Complex as a Sensor. In: Yoshida, T. (eds) Abscisic Acid. Methods in Molecular Biology, vol 2462. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2156-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2156-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2155-4

  • Online ISBN: 978-1-0716-2156-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation