Fluorescent Genetic Tools for Studying Brown Fat Development and Function in Mice

  • Protocol
  • First Online:
Brown Adipose Tissue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2448))

Abstract

Techniques to trace and isolate brown adipocyte precursor and adipocytes during development and disease are essential to fully understand brown adipose tissue development and function. Here we report several protocols using the R26R-mTmG reporter mice in thermogenic tissues based on confocal microscopy and fluorescence based flow cytometry. These techniques may be useful to understand the influence of genetic or environmental alterations in brown adipocyte precursors and adipocyte biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jastroch M, Seebacher F (2020) Importance of adipocyte browning in the evolution of endothermy. Philos Trans R Soc Lond Ser B Biol Sci 375(1793):20190134. https://doi.org/10.1098/rstb.2019.0134

    Article  CAS  Google Scholar 

  2. Scheele C, Nielsen S (2017) Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox Biol 12:770–775. https://doi.org/10.1016/j.redox.2017.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte EE (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol (Lausanne) 9:447. https://doi.org/10.3389/fendo.2018.00447

    Article  PubMed  Google Scholar 

  4. Hui S, Cowan AJ, Zeng X, Yang L, TeSlaa T, Li X, Bartman C, Zhang Z, Jang C, Wang L, Lu W, Rojas J, Baur J, Rabinowitz JD (2020) Quantitative fluxomics of circulating metabolites. Cell Metab 32(4):676–688.e674. https://doi.org/10.1016/j.cmet.2020.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG, Rabinowitz JD, Arany Z (2019) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab 29(2):417–429.e414. https://doi.org/10.1016/j.cmet.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  6. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):E444–E452. https://doi.org/10.1152/ajpendo.00691.2006

    Article  CAS  PubMed  Google Scholar 

  7. Steinberg JD, Vogel W, Vegt E (2017) Factors influencing brown fat activation in FDG PET/CT: a retrospective analysis of 15,000+ cases. Br J Radiol 90(1075):20170093. https://doi.org/10.1259/bjr.20170093

    Article  PubMed  PubMed Central  Google Scholar 

  8. Becher T, Palanisamy S, Kramer DJ, Eljalby M, Marx SJ, Wibmer AG, Butler SD, Jiang CS, Vaughan R, Schoder H, Mark A, Cohen P (2021) Brown adipose tissue is associated with cardiometabolic health. Nat Med 27(1):58–65. https://doi.org/10.1038/s41591-020-1126-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. https://doi.org/10.1002/dvg.20335

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez-Gurmaches J, Guertin DA (2014) Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun 5:4099. https://doi.org/10.1038/ncomms5099

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez-Gurmaches J, Hsiao WY, Guertin DA (2015) Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep 4(4):541–550. https://doi.org/10.1016/j.stemcr.2015.02.008

    Article  CAS  Google Scholar 

  12. Zwick RK, Rudolph MC, Shook BA, Holtrup B, Roth E, Lei V, Van Keymeulen A, Seewaldt V, Kwei S, Wysolmerski J, Rodeheffer MS, Horsley V (2018) Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nat Commun 9(1):3592. https://doi.org/10.1038/s41467-018-05911-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakaguchi M, Fujisaka S, Cai W, Winnay JN, Konishi M, O'Neill BT, Li M, Garcia-Martin R, Takahashi H, Hu J, Kulkarni RN, Kahn CR (2017) Adipocyte dynamics and reversible metabolic syndrome in mice with an inducible adipocyte-specific deletion of the insulin receptor. Cell Metab 25(2):448–462. https://doi.org/10.1016/j.cmet.2016.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sebo ZL, Jeffery E, Holtrup B, Rodeheffer MS (2018) A mesodermal fate map for adipose tissue. Development 145(17):dev166801. https://doi.org/10.1242/dev.166801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berry R, Rodeheffer MS (2013) Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 15(3):302–308. https://doi.org/10.1038/ncb2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chi J, Crane A, Wu Z, Cohen P (2018) Adipo-clear: a tissue clearing method for three-dimensional imaging of adipose tissue. J Vis Exp (137):58271. https://doi.org/10.3791/58271

  17. Qi Y, Yu T, Xu J, Wan P, Ma Y, Zhu J, Li Y, Gong H, Luo Q, Zhu D (2019) FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci Adv 5(1):eaau8355. https://doi.org/10.1126/sciadv.aau8355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Sanchez-Gurmaches lab for valuable discussions. We thank Dr. John Matthew Kofron and the Confocal Imaging Core at Cincinnati Children’s Hospital Medical Center for sharing their technical expertise. This work was supported by grants from the American Heart Association (18CDA34080527) to J.S.-G. and a CCHMC Trustee Award to J.S.-G. R.M. was supported by a postdoctoral fellowship from the American Heart Association (19POST34380545). This project was supported in part by NIH P30 DK078392 (Confocal Imaging Core) of the Digestive Diseases Research Core Center in Cincinnati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Sanchez-Gurmaches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mukherjee, R., Sanchez-Gurmaches, J. (2022). Fluorescent Genetic Tools for Studying Brown Fat Development and Function in Mice. In: Guertin, D.A., Wolfrum, C. (eds) Brown Adipose Tissue. Methods in Molecular Biology, vol 2448. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2087-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2087-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2086-1

  • Online ISBN: 978-1-0716-2087-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation