Application of 3D Culture Assays to Study Breast Morphogenesis, Epithelial Plasticity, and Cellular Interactions in an Epithelial Progenitor Cell Line

  • Protocol
  • First Online:
Stem Cell Assays

Abstract

Capturing breast morphogenesis and cancer progression in 3D culture using cell lines with stem cell properties can greatly increase understanding of the underlying mechanisms involved in these processes, highlighting the importance of the culture method. D492 is a breast epithelial progenitor cell line that provides a model for branching morphogenesis when cultured in 3D reconstituted basement membrane matrix (rBM). Along with its derivate cell lines D492M and D492HER2, D492 also serves as a robust model for epithelial to mesenchymal transition (EMT) and tumorigenicity, respectively. Here, we describe the routine maintenance and application of the D492 cell lines in 3D culture for the study of branching morphogenesis, EMT and epithelial-endothelial interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1(4):533–557. https://doi.org/10.1002/wdev.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Visvader JE (2009) Kee** abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23(22):2563–2577. https://doi.org/10.1101/gad.1849509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7(10):1120–1134. https://doi.org/10.1039/c5ib00040h

    Article  CAS  Google Scholar 

  4. Tomko LA, Hill RC, Barrett A, Szulczewski JM, Conklin MW, Eliceiri KW, Keely PJ, Hansen KC, Ponik SM (2018) Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci Rep 8(1):12941. https://doi.org/10.1038/s41598-018-31126-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. https://doi.org/10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sumbal J, Budkova Z, Traustadottir GA, Koledova Z (2020) Mammary organoids and 3D cell cultures: old dogs with new tricks. J Mammary Gland Biol Neoplasia. https://doi.org/10.1007/s10911-020-09468-x

  7. Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissell MJ, Petersen OW (2002) Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16(6):693–706. https://doi.org/10.1101/gad.952602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sigurdsson V, Hilmarsdottir B, Sigmundsdottir H, Fridriksdottir AJ, Ringner M, Villadsen R, Borg A, Agnarsson BA, Petersen OW, Magnusson MK, Gudjonsson T (2011) Endothelial induced EMT in breast epithelial cells with stem cell properties. PLoS One 6(9):e23833. https://doi.org/10.1371/journal.pone.0023833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Briem E, Ingthorsson S, Traustadottir GA, Hilmarsdottir B, Gudjonsson T (2019) Application of the D492 cell lines to explore breast morphogenesis, EMT and cancer progression in 3D culture. J Mammary Gland Biol Neoplasia 24(2):139–147. https://doi.org/10.1007/s10911-018-09424-w

    Article  PubMed  Google Scholar 

  10. Ingthorsson S, Andersen K, Hilmarsdottir B, Maelandsmo GM, Magnusson MK, Gudjonsson T (2016) HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR. Oncogene 35(32):4244–4255. https://doi.org/10.1038/onc.2015.489

    Article  CAS  PubMed  Google Scholar 

  11. Morera E, Steinhauser SS, Budkova Z, Ingthorsson S, Kricker J, Krueger A, Traustadottir GA, Gudjonsson T (2019) YKL-40/CHI3L1 facilitates migration and invasion in HER2 overexpressing breast epithelial progenitor cells and generates a niche for capillary-like network formation. In Vitro Cell Dev Biol Anim 55(10):838–853. https://doi.org/10.1007/s11626-019-00403-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steinhaeuser SS, Morera E, Budkova Z, Schepsky A, Wang Q, Rolfsson O, Riedel A, Krueger A, Hilmarsdottir B, Maelandsmo GM, Valdimarsdottir B, Sigurdardottir AK, Agnarsson BA, Jonasson JG, Ingthorsson S, Traustadottir GA, Oskarsson T, Gudjonsson T (2020) ECM1 secreted by HER2-overexpressing breast cancer cells promotes formation of a vascular niche accelerating cancer cell migration and invasion. Lab Invest 100(7):928–944. https://doi.org/10.1038/s41374-020-0415-6

    Article  CAS  PubMed  Google Scholar 

  13. Blaschke RJ, Howlett AR, Desprez PY, Petersen OW, Bissell MJ (1994) Cell differentiation by extracellular matrix components. Methods Enzymol 245:535–556. https://doi.org/10.1016/0076-6879(94)45027-7

    Article  CAS  PubMed  Google Scholar 

  14. Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4(4):359–365. https://doi.org/10.1038/nmeth1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Landspitali University Hospital Science Fund, University of Iceland Research Fund, and Icelandic Science and Technology Policy—Grant of Excellence: 152144051, “Göngum saman,” a supporting group for breast cancer research in Iceland (www.gongumsaman.is) and the Science Fund of the Icelandic Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnhildur Asta Traustadottir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sigurdardottir, A.K., Hilmarsdottir, B., Gudjonsson, T., Traustadottir, G.A. (2022). Application of 3D Culture Assays to Study Breast Morphogenesis, Epithelial Plasticity, and Cellular Interactions in an Epithelial Progenitor Cell Line. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation