Integrating Multiple Quantitative Proteomic Analyses Using MetaMSD

  • Protocol
  • First Online:
Statistical Analysis of Proteomic Data

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2426))

Abstract

MetaMSD is a proteomic software that integrates multiple quantitative mass spectrometry data analysis results using statistical summary combination approaches. By utilizing this software, scientists can combine results from their pilot and main studies to maximize their biomarker discovery while effectively controlling false discovery rates. It also works for combining proteomic datasets generated by different labeling techniques and/or different types of mass spectrometry instruments. With these advantages, MetaMSD enables biological researchers to explore various proteomic datasets in public repositories to discover new biomarkers and generate interesting hypotheses for future studies. In this protocol, we provide a step-by-step procedure on how to install and perform a meta-analysis for quantitative proteomics using MetaMSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999. https://doi.org/10.1038/13690

    Article  CAS  PubMed  Google Scholar 

  2. Hardt M, Witkowska HE, Webb S, Thomas LR, Dixon SE, Hall SC, Fisher SJ (2005) Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal Chem 77(15):4947–4954. https://doi.org/10.1021/ac050161r

    Article  CAS  PubMed  Google Scholar 

  3. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Probes 1(5):376–386. https://doi.org/10.1074/mcp.M200025-MCP200

    Article  CAS  Google Scholar 

  4. Radulovic D, Jelveh S, Ryu S, Hamilton TG, Foss E, Mao Y, Emili A (2004) Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 3(10):984–997. https://doi.org/10.1074/mcp.M400061-MCP200

    Article  CAS  PubMed  Google Scholar 

  5. Ryu S, Gallis B, Goo YA, Shaffer SA, Radulovic D, Goodlett DR (2008) Comparison of a label-free quantitative proteomic method based on peptide ion current area to the isotope coded affinity tag method. Cancer Inf 6:CIN–S385. https://doi.org/10.4137/CIN.S385

  6. Li XJ, Zhang H, Ranish JA, Aebersold R (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75(23):6648–6657. https://doi.org/10.1021/ac034633i

    Article  CAS  PubMed  Google Scholar 

  7. Ryu SY, Qian WJ, Camp DG, Smith RD, Tompkins RG, Davis RW, **ao W (2014) Detecting differential protein expression in large-scale population proteomics. Bioinformatics 30(19):2741–2746. https://doi.org/10.1093/bioinformatics/btu341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryu SY (2014) Bioinformatics tools to identify and quantify proteins using mass spectrometry data. Adv Protein Chem Struct Biol 94:1–17. https://doi.org/10.1016/B978-0-12-800168-4.00001-9

    Article  PubMed  Google Scholar 

  9. Washburn MP, Ulaszek RR, Yates JR (2003) Reproducibility of quantitative proteomic analyses of complex biological mixtures by multidimensional protein identification technology. Anal Chem 75(19):5054–5061. https://doi.org/10.1021/ac034120b

    Article  CAS  PubMed  Google Scholar 

  10. Ryu SY, Wendt GA (2019) MetaMSD: meta analysis for mass spectrometry data. PeerJ 7:e6699. https://doi.org/10.7717/peerj.6699

    Article  PubMed  PubMed Central  Google Scholar 

  11. Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc B 64(3):479–498. https://doi.org/10.1111/1467-9868.00346

    Article  Google Scholar 

  12. Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ (2020) The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectr Rev 39(3):229–244. https://doi.org/10.1002/mas.21540

    Article  CAS  Google Scholar 

  13. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Probes 13(9):2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  CAS  Google Scholar 

  14. Schaab C, Geiger T, Stoehr G, Cox J, Mann M (2012) Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol Cell Proteomics 11(3):M111–014068. https://doi.org/10.1074/mcp.M111.014068

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lemeer S, Hahne H, Pachl F, Kuster B (2012) Software tools for MS-based quantitative proteomics: a brief overview. Quantitative methods in proteomics. Springer, Berlin, pp 489–499. https://doi.org/10.1007/978-1-61779-885-6_29

    Google Scholar 

  16. Solntsev SK, Shortreed MR, Frey BL, Smith LM (2018) Enhanced global post-translational modification discovery with MetaMorpheus. J Proteome Res 17(5):1844–1851. https://doi.org/10.1021/acs.jproteome.7b00873

    Article  CAS  PubMed  Google Scholar 

  17. Bouyssié D, Hesse AM, Mouton-Barbosa E, Rompais M, Macron C, Carapito C, Gonzalez de Peredo A, Couté Y, Dupierris V, Burel A, Menetrey JP, Kalaitzakis A, Poisat J, Romdhani A, Burlet-Schiltz O, Cianférani S, Garin J, Bruley C (2020) Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36(10):3148–3155. https://doi.org/10.1093/bioinformatics/btaa118

    Article  PubMed  PubMed Central  Google Scholar 

  18. The M, Käll L (2019) Integrated identification and quantification error probabilities for shotgun proteomics. Mol Cell Proteomics 18(3):561–570

    Article  PubMed  Google Scholar 

  19. Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, Vitek O (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30(17):2524–2526. https://doi.org/10.1093/bioinformatics/btu305

    Article  CAS  PubMed  Google Scholar 

  20. Chang CY, Picotti P, Hüttenhain R, Heinzelmann-Schwarz V, Jovanovic M, Aebersold R, Vitek O (2012) Protein significance analysis in selected reaction monitoring (SRM) measurements. Mol Cell Proteomics 11(4):M111–014662. https://doi.org/10.1074/mcp.M111.014662

    Article  PubMed  PubMed Central  Google Scholar 

  21. Clough T, Thaminy S, Ragg S, Aebersold R, Vitek O (2012) Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs. BMC Bioinf 13(16):1–17. https://doi.org/10.1186/1471-2105-13-S16-S6

    Google Scholar 

  22. Wieczorek S, Combes F, Lazar C, Giai Gianetto Q, Gatto L, Dorffer A, Hesse AM, Coute Y, Ferro M, Bruley C, Burger T (2017) DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. Bioinformatics 33(1):135–136. https://doi.org/10.1093/bioinformatics/btw580

    Article  CAS  PubMed  Google Scholar 

  23. Heard NA, Rubin-Delanchy P (2018) Choosing between methods of combining p-values. Biometrika 105(1):239–246. https://doi.org/10.1093/biomet/asx076

    Article  Google Scholar 

  24. Sedgwick P (2012) Multiple significance tests: the Bonferroni correction. BMJ 344. https://doi.org/10.1136/bmj.e509

Download references

Acknowledgements

MetaMSD software development was supported by grants from the National Institute of General Medical Sciences (GM103440 and 1R15GM126562-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Young Ryu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ryu, S.Y., Yun, M.P., Kim, S. (2023). Integrating Multiple Quantitative Proteomic Analyses Using MetaMSD. In: Burger, T. (eds) Statistical Analysis of Proteomic Data. Methods in Molecular Biology, vol 2426. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1967-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1967-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1966-7

  • Online ISBN: 978-1-0716-1967-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation