Fetal Thymic Organ Culture (FTOC) Optimized for Gamma-Delta T Cell Studies

  • Protocol
  • First Online:
Immune Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2421))

Abstract

Fetal thymic organ culture (FTOC) provides a method for analyzing T cell development in a physiological context outside the animal. This technique enables studies of genetically altered mice that are embryonic or neonatal lethal, in addition to bypassing the complication of migration of successive waves of T cells out of the thymus. The hanging drop method involves depletion of thymocytes from host lobes using deoxyguanosine, followed by reconstitution with hematopoietic progenitors. This method has become standard for analysis of fetal liver precursors, bone marrow precursors, and early thymocytes. However, difficulties are encountered in the analysis of γδ T cell precursors using this method. We have developed a modification of FTOC in which partial depletion of hematopoietic precursors by shortened deoxyguanosine treatment, coupled with the use of TCRδ-deficient host lobes, enables engraftment and development of fetal γδTCR+ thymocytes. This method allows comparisons of development and functional differentiation of γδ T cell precursors between cells of different genotypes or treatments, in the context of a permissive thymic microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auerbach R (1960) Morphogenetic interactions in the development of the mouse thymus gland. Dev Biol 2:271–284. https://doi.org/10.1016/0012-1606(60)90009-9

    Article  CAS  PubMed  Google Scholar 

  2. Jenkinson EJ, Franchi LL, Kingston R, Owen JJ (1982) Effect of deoxyguanosine on lymphopoiesis in the develo** thymus rudiment in vitro: application in the production of chimeric thymus rudiments. Eur J Immunol 12(7):583–587. https://doi.org/10.1002/eji.1830120710

    Article  CAS  PubMed  Google Scholar 

  3. Anderson MK, Weiss AH, Hernandez-Hoyos G, Dionne CJ, Rothenberg EV (2002) Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 16(2):285–296. https://doi.org/10.1016/s1074-7613(02)00277-7

    Article  CAS  PubMed  Google Scholar 

  4. Anderson G, Jenkinson EJ, Moore NC, Owen JJ (1993) MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362(6415):70–73. https://doi.org/10.1038/362070a0

    Article  CAS  PubMed  Google Scholar 

  5. Jenkinson EJ, Van Ewijk W, Owen JJ (1981) Major histocompatibility complex antigen expression on the epithelium of the develo** thymus in normal and nude mice. J Exp Med 153(2):280–292. https://doi.org/10.1084/jem.153.2.280

    Article  CAS  PubMed  Google Scholar 

  6. Jenkinson EJ, Anderson G, Owen JJ (1992) Studies on T cell maturation on defined thymic stromal cell populations in vitro. J Exp Med 176(3):845–853. https://doi.org/10.1084/jem.176.3.845

    Article  CAS  PubMed  Google Scholar 

  7. Schmitt TM, Zuniga-Pflucker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17(6):749–756

    Article  CAS  Google Scholar 

  8. Jouan Y, Patin EC, Hassane M, Si-Tahar M, Baranek T, Paget C (2018) Thymic program directing the functional development of gammadeltaT17 cells. Front Immunol 9:981. https://doi.org/10.3389/fimmu.2018.00981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts NA, White AJ, Jenkinson WE, Turchinovich G, Nakamura K, Withers DR, McConnell FM, Desanti GE, Benezech C, Parnell SM, Cunningham AF, Paolino M, Penninger JM, Simon AK, Nitta T, Ohigashi I, Takahama Y, Caamano JH, Hayday AC, Lane PJ, Jenkinson EJ, Anderson G (2012) Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36(3):427–437. https://doi.org/10.1016/j.immuni.2012.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J Immunol 169(6):2842–2845. https://doi.org/10.4049/jimmunol.169.6.2842

    Article  CAS  PubMed  Google Scholar 

  11. Silva-Santos B, Pennington DJ, Hayday AC (2005) Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 307(5711):925–928. https://doi.org/10.1126/science.1103978

    Article  CAS  PubMed  Google Scholar 

  12. In TSH, Trotman-Grant A, Fahl S, Chen ELY, Zarin P, Moore AJ, Wiest DL, Zuniga-Pflucker JC, Anderson MK (2017) HEB is required for the specification of fetal IL-17-producing gammadelta T cells. Nat Commun 8(1):2004. https://doi.org/10.1038/s41467-017-02225-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Selvanatnam JS, In TSH, Anderson MK (2020) Interaction between gamma delta TCR signaling and the E protein-Id axis in gamma delta T cell development. Immunol Rev 298(1):181–197

    Google Scholar 

  14. Heilig JS, Tonegawa S (1986) Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322(6082):836–840. https://doi.org/10.1038/322836a0

    Article  CAS  PubMed  Google Scholar 

  15. Paget C, Chow MT, Gherardin NA, Beavis PA, Uldrich AP, Duret H, Hassane M, Souza-Fonseca-Guimaraes F, Mogilenko DA, Staumont-Salle D, Escalante NK, Hill GR, Neeson P, Ritchie DS, Dombrowicz D, Mallevaey T, Trottein F, Belz GT, Godfrey DI, Smyth MJ (2015) CD3bright signals on gammadelta T cells identify IL-17A-producing Vgamma6Vdelta1+ T cells. Immunol Cell Biol 93(2):198–212. https://doi.org/10.1038/icb.2014.94

    Article  CAS  PubMed  Google Scholar 

  16. Coffey F, Lee SY, Buus TB, Lauritsen JP, Wong GW, Joachims ML, Thompson LF, Zuniga-Pflucker JC, Kappes DJ, Wiest DL (2014) The TCR ligand-inducible expression of CD73 marks gammadelta lineage commitment and a metastable intermediate in effector specification. J Exp Med 211(2):329–343. https://doi.org/10.1084/jem.20131540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gray EE, Ramirez-Valle F, Xu Y, Wu S, Wu Z, Karjalainen KE, Cyster JG (2013) Deficiency in IL-17-committed Vgamma4(+) gammadelta T cells in a spontaneous Sox13-mutant CD45.1(+) congenic mouse substrain provides protection from dermatitis. Nat Immunol 14(6):584–592. https://doi.org/10.1038/ni.2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zuberbuehler MK, Parker ME, Wheaton JD, Espinosa JR, Salzler HR, Park E, Ciofani M (2019) The transcription factor c-Maf is essential for the commitment of IL-17-producing gammadelta T cells. Nat Immunol 20(1):73–85. https://doi.org/10.1038/s41590-018-0274-0

    Article  CAS  PubMed  Google Scholar 

  19. Zarin P, In TS, Chen EL, Singh J, Wong GW, Mohtashami M, Wiest DL, Anderson MK, Zuniga-Pflucker JC (2018) Integration of T-cell receptor, Notch and cytokine signals programs mouse gammadelta T-cell effector differentiation. Immunol Cell Biol 96(9):994–1007. https://doi.org/10.1111/imcb.12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roark CL, Aydintug MK, Lewis J, Yin X, Lahn M, Hahn YS, Born WK, Tigelaar RE, O’Brien RL (2004) Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. J Leukoc Biol 75(1):68–75. https://doi.org/10.1189/jlb.0703326

    Article  CAS  PubMed  Google Scholar 

  21. Marchitto MC, Dillen CA, Liu H, Miller RJ, Archer NK, Ortines RV, Alphonse MP, Marusina AI, Merleev AA, Wang Y, Pinsker BL, Byrd AS, Brown ID, Ravipati A, Zhang E, Cai SS, Limjunyawong N, Dong X, Yeaman MR, Simon SI, Shen W, Durum SK, O’Brien RL, Maverakis E, Miller LS (2019) Clonal Vgamma6(+)Vdelta4(+) T cells promote IL-17-mediated immunity against Staphylococcus aureus skin infection. Proc Natl Acad Sci U S A 116(22):10917–10926. https://doi.org/10.1073/pnas.1818256116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibata K, Yamada H, Nakamura R, Sun X, Itsumi M, Yoshikai Y (2008) Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers. J Immunol 181(9):5940–5947. https://doi.org/10.4049/jimmunol.181.9.5940

    Article  CAS  PubMed  Google Scholar 

  23. Dienz O, DeVault VL, Musial SC, Mistri SK, Mei L, Baraev A, Dragon JA, Krementsov D, Veillette A, Boyson JE (2020) Critical role for SLAM/SAP signaling in the thymic developmental programming of IL-17- and IFN-gamma-producing gammadelta T cells. J Immunol 204(6):1521–1534. https://doi.org/10.4049/jimmunol.1901082

    Article  CAS  PubMed  Google Scholar 

  24. Sumaria N, Grandjean CL, Silva-Santos B, Pennington DJ (2017) Strong TCRgammadelta signaling prohibits thymic development of IL-17A-secreting gammadelta T cells. Cell Rep 19(12):2469–2476. https://doi.org/10.1016/j.celrep.2017.05.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kisielow J, Kopf M, Karjalainen K (2008) SCART scavenger receptors identify a novel subset of adult gammadelta T cells. J Immunol 181(3):1710–1716. https://doi.org/10.4049/jimmunol.181.3.1710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants CIHR 201610PJT, NIH 1P01AI102853-06, and RGPIN 05333-14 to MKA, and JS was supported by an American Association of Immunologist Careers in Immunology award and a CIHR Postdoctoral Fellowship. TSHI was supported by Ontario Graduate Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele K. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Selvaratnam, J.S., In, T.S.H., Anderson, M.K. (2022). Fetal Thymic Organ Culture (FTOC) Optimized for Gamma-Delta T Cell Studies. In: Rast, J., Buckley, K. (eds) Immune Receptors. Methods in Molecular Biology, vol 2421. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1944-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1944-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1943-8

  • Online ISBN: 978-1-0716-1944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation