Implementation of Clinical Phosphoproteomics and Proteomics for Personalized Medicine

  • Protocol
  • First Online:
Clinical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2420))

Abstract

The identification of biomarkers for companion diagnostics is revolutionizing the development of treatments tailored to individual patients in different disease areas including cancer. Precision medicine is most frequently based on the detection of genomic markers that correlate with the efficacy of selected targeted therapies. However, since nongenetic mechanisms also contribute to disease biology, there is a considerable interest of using proteomic techniques as additional source of biomarkers to personalize therapies. In this chapter, we describe label-free mass spectrometry methods for proteomic and phosphoproteomic analysis compatible with routine analysis of clinical samples. We also outline bioinformatic pipelines based on statistical learning that use these proteomics datasets as input to quantify kinase activities and predict drug responses in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marine JC, Dawson SJ, Dawson MA (2020) Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer 20:743–756

    Article  CAS  Google Scholar 

  2. Dermit M, Dokal A, Cutillas PR (2017) Approaches to identify kinase dependencies in cancer signalling networks. FEBS Lett 591:2577–2592

    Article  CAS  Google Scholar 

  3. Casado P, Hijazi M, Britton D, Cutillas PR (2017) Impact of phosphoproteomics in the translation of kinase-targeted therapies. Proteomics 17

    Google Scholar 

  4. Cutillas PR (2015) Role of phosphoproteomics in the development of personalized cancer therapies. Proteomics Clin Appl 9:383–395

    Article  CAS  Google Scholar 

  5. Giudice G, Petsalaki E (2019) Proteomics and phosphoproteomics in precision medicine: applications and challenges. Brief Bioinform 20:767–777

    Article  CAS  Google Scholar 

  6. Stone RM, Mandrekar SJ, Sanford BL et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377:454–464

    Article  CAS  Google Scholar 

  7. Fischer T, Stone RM, Deangelo DJ et al (2010) Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 28:4339–4345

    Article  CAS  Google Scholar 

  8. Casado P, Wilkes EH, Miraki-Moud F et al (2018) Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells. Leukemia 32:1818–1822

    Article  CAS  Google Scholar 

  9. Macklin A, Khan S, Kislinger T (2020) Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 17:17

    Article  CAS  Google Scholar 

  10. He T (2019) Implementation of proteomics in clinical trials. Proteomics Clin Appl 13:e1800198

    Article  Google Scholar 

  11. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165:535–550

    Article  CAS  Google Scholar 

  12. Nishi H, Shaytan A, Panchenko AR (2014) Physicochemical mechanisms of protein regulation by phosphorylation. Front Genet 5:270

    Article  Google Scholar 

  13. Wirbel J, Cutillas P, Saez-Rodriguez J (2018) Phosphoproteomics-based profiling of kinase activities in cancer cells. Methods Mol Biol 1711:103–132

    Article  CAS  Google Scholar 

  14. Tong M, Yu C, Shi J et al (2019) Phosphoproteomics enables molecular subty** and nomination of kinase candidates for individual patients of diffuse-type gastric cancer. iScience 22:44–57

    Article  CAS  Google Scholar 

  15. Zagorac I, Fernandez-Gaitero S, Penning R et al (2018) In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer. Nat Commun 9:3501

    Article  Google Scholar 

  16. Garrido-Castro AC, Saura C, Barroso-Sousa R et al (2020) Phase 2 study of buparlisib (BKM120), a pan-class I PI3K inhibitor, in patients with metastatic triple-negative breast cancer. Breast Cancer Res 22:120

    Article  CAS  Google Scholar 

  17. **ng Y, Lin NU, Maurer MA et al (2019) Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res 21:78

    Article  Google Scholar 

  18. Pierobon M, Silvestri A, Spira A et al (2014) Pilot phase I/II personalized therapy trial for metastatic colorectal cancer: evaluating the feasibility of protein pathway activation map** for stratifying patients to therapy with imatinib and panitumumab. J Proteome Res 13:2846–2855

    Article  CAS  Google Scholar 

  19. Yan Y, Serra V, Prudkin L et al (2013) Evaluation and clinical analyses of downstream targets of the Akt inhibitor GDC-0068. Clin Cancer Res 19:6976–6986

    Article  CAS  Google Scholar 

  20. Bell AW, Deutsch EW, Au CE et al (2009) A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat Methods 6:423–430

    Article  CAS  Google Scholar 

  21. Zhang B, Whiteaker JR, Hoofnagle, et al. (2019) Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol 16:256–268

    Article  Google Scholar 

  22. Casado P, Rodriguez-Prados JC, Cosulich SC et al (2013) Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal 6:rs6

    Article  Google Scholar 

  23. Ho D (2020) Artificial intelligence in cancer therapy. Science 367:982–983

    Article  CAS  Google Scholar 

  24. Cutillas PR, Vanhaesebroeck B (2007) Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol Cell Proteomics 6:1560–1573

    Article  CAS  Google Scholar 

  25. Lawrence RT, Searle BC, Llovet A, Villen J (2016) Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Nat Methods 13:431–434

    Article  CAS  Google Scholar 

  26. Bateman NW, Goulding SP, Shulman NJ et al (2014) Maximizing peptide identification events in proteomic workflows using data-dependent acquisition (DDA). Mol Cell Proteomics 13:329–338

    Article  CAS  Google Scholar 

  27. Hijazi M, Smith R, Rajeeve V et al (2020) Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring. Nat Biotechnol 38:493–502

    Article  CAS  Google Scholar 

  28. Wilkes EH, Terfve C, Gribben JG et al (2015) Empirical inference of circuitry and plasticity in a kinase signaling network. Proc Natl Acad Sci U S A 112:7719–7724

    Article  CAS  Google Scholar 

  29. Bzdok D, Altman N, Krzywinski M (2018) Statistics versus machine learning. Nat Methods 15:233–234

    Article  CAS  Google Scholar 

  30. Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinforma 2015:198363

    Article  Google Scholar 

  31. Suddason T, Gallagher E (2015) A RING to rule them all? Insights into the Map3k1 PHD motif provide a new mechanistic understanding into the diverse roles of Map3k1. Cell Death Differ 22:540–548

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Engineering and Physical Sciences Research Council (EPSRC, Turing Programme in Molecular Biology to P.R.C), Blood Cancer UK (20008, M.H.V and P.R.C.), Cancer Research UK (C15966/A24375, P.C and P.R.C.), and the Medical Research Council (MR/R015686/1, H.G. and P.R.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. Cutillas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Casado, P., Hijazi, M., Gerdes, H., Cutillas, P.R. (2022). Implementation of Clinical Phosphoproteomics and Proteomics for Personalized Medicine. In: Corrales, F.J., Paradela, A., Marcilla, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 2420. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1936-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1936-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1935-3

  • Online ISBN: 978-1-0716-1936-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation