Synaptic Vesicle Pool Monitoring with Synapto-pHluorin

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

  • 1177 Accesses

Abstract

Synaptic vesicle exocytosis can be monitored with genetically encoded pH sensors in an in vitro fluorescence microscopy setup. Here, we describe a workflow starting with preparation of a primary cell culture to eventually estimate synaptic vesicle pool sizes based on electrical current-evoked vesicle release, which is reported by the synaptobrevin 2-EGFP fusion protein synapto-pHluorin (spH) that is expressed inside the synaptic vesicle membrane. The readily releasable pool and the recycling pool of synaptic vesicles are released separately in response to electrical stimulation. As vesicle reacidification is blocked in this experimental design, every released vesicle is counted only once. This spH-based approach offers different information than styryl-dye (FM dyes)-based approaches because the total synaptic pool size is measured by an alkalinization step. This provides a normalization constant for quantifying and comparing the synaptic vesicle pool sizes. In addition to investigation of basic research questions, spH-reported vesicle release is valuable to determine presynaptic effects of, e.g., pharmacological drug treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 109.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ryan TA, Smith SJ (1995) Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14(5):983–989

    Article  CAS  Google Scholar 

  2. Wienisch M, Klingauf J (2006) Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat Neurosci 9(8):1019–1027. https://doi.org/10.1038/nn1739

    Article  CAS  PubMed  Google Scholar 

  3. Amato D, Canneva F, Cumming P et al (2020) A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: the role of the dopamine transporter. Mol Psychiatry 25(9):2101–2118. https://doi.org/10.1038/s41380-018-0114-5

    Article  CAS  PubMed  Google Scholar 

  4. Dahlmanns JK (2019) Development of quantitative functional analysis tools and models for neuroscientific applications. Dissertation; Friedrich-Alexander-Universität Erlangen-Nürnberg urn:nbn:de:bvb:29-opus4-103312

    Google Scholar 

  5. Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16(6):1197–1207

    Article  CAS  Google Scholar 

  6. Wilhelm BG, Groemer TW, Rizzoli SO (2010) The same synaptic vesicles drive active and spontaneous release. Nat Neurosci 13(12):1454–1456. https://doi.org/10.1038/nn.2690

    Article  CAS  PubMed  Google Scholar 

  7. Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 3(7):497–516. https://doi.org/10.1038/nrn876

    Article  CAS  PubMed  Google Scholar 

  8. Hua Y, Sinha R, Thiel CS et al (2011) A readily retrievable pool of synaptic vesicles. Nat Neurosci 14(7):833–839. https://doi.org/10.1038/nn.2838

    Article  CAS  PubMed  Google Scholar 

  9. Dahlmanns M, Yakubov E, Chen D et al (2017) Chemotherapeutic xCT inhibitors sorafenib and erastin unraveled with the synaptic optogenetic function analysis tool. Cell Death Discov 3:17030. https://doi.org/10.1038/cddiscovery.2017.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tagliatti E, Fadda M, Falace A et al (2016) Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. eLife 5:10116. https://doi.org/10.7554/eLife.10116

    Article  Google Scholar 

  11. Royle SJ, Granseth B, Odermatt B et al (2008) Imaging phluorin-based probes at hippocampal synapses. Methods Mol Biol 457:293–303

    Article  CAS  Google Scholar 

  12. Sankaranarayanan S, De Angelis D, Rothman JE et al (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79(4):2199–2208. https://doi.org/10.1016/S0006-3495(00)76468-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Katharina Dahlmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dahlmanns, M., Dahlmanns, J.K. (2022). Synaptic Vesicle Pool Monitoring with Synapto-pHluorin. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation