Methods for Assessment of OMV/GMMA Quality and Stability

  • Protocol
  • First Online:
Bacterial Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2414))

  • 2069 Accesses

Abstract

Outer membrane vesicles (OMV) represent a promising platform for the development of vaccines against bacterial pathogens. More recently, bacteria have been genetically modified to increase OMV yield and modulate the design of resulting particles, also named generalized modules for membrane antigens (GMMA). OMV/GMMA resemble the bacterial surface of the pathogen, where key antigens to elicit a protective immune response are and contain pathogen-associated molecular patterns (e.g., lipopolysaccharides, lipoproteins) conferring self-adjuvanticity. On the other hand, OMV/GMMA are quite complex molecules and a comprehensive panel of analytical methods is needed to ensure quality, consistency of manufacture and to follow their stability over time. Here, we describe several procedures that can be used for OMV/GMMA characterization as particles and for analysis of key antigens displayed on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Micoli F, MacLennan CA (2020) Outer membrane vesicle vaccines. Semin Immunol 50:101433. https://doi.org/10.1016/j.smim.2020.101433

    Article  CAS  PubMed  Google Scholar 

  2. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74(1):81–94. https://doi.org/10.1128/mmbr.00031-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerke C, Colucci AM, Giannelli C et al (2015) Production of a Shigella sonnei vaccine based on generalized modules for membrane antigens (GMMA), 1790GAHB. PLoS One 10(8):e0134478. https://doi.org/10.1371/journal.pone.0134478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van de Waterbeemd B, Streefland M, van der Ley P et al (2010) Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine 28(30):4810–4816. https://doi.org/10.1016/j.vaccine.2010.04.082

    Article  CAS  PubMed  Google Scholar 

  5. Mancini F, Rossi O, Necchi F, Micoli F (2020) OMV vaccines and the role of TLR agonists in immune response. Int J Mol Sci 21(12):4416. https://doi.org/10.3390/ijms21124416

    Article  CAS  PubMed Central  Google Scholar 

  6. van der Pol L, Stork M, van der Ley P (2015) Outer membrane vesicles as platform vaccine technology. Biotechnol J 10(11):1689–1706. https://doi.org/10.1002/biot.201400395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kis Z, Shattock R, Shah N, Kontoravdi C (2019) Emerging technologies for low-cost, rapid vaccine manufacture. Biotechnol J 14(1):e1800376. https://doi.org/10.1002/biot.201800376

    Article  CAS  PubMed  Google Scholar 

  8. Li M, Zhou H, Yang C et al (2020) Bacterial outer membrane vesicles as a platform for biomedical applications: an update. J Control Release 323:253–268. https://doi.org/10.1016/j.jconrel.2020.04.031

    Article  CAS  PubMed  Google Scholar 

  9. De Benedetto G, Cescutti P, Giannelli C, Rizzo R, Micoli F (2017) Multiple techniques for size determination of generalized modules for membrane antigens from Salmonella typhimurium and Salmonella enteritidis. ACS Omega 2(11):8282–8289. https://doi.org/10.1021/acsomega.7b01173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tani C, Stella M, Donnarumma D et al (2014) Quantification by LC-MS(E) of outer membrane vesicle proteins of the Bexsero® vaccine. Vaccine 32(11):1273–1279. https://doi.org/10.1016/j.vaccine.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  11. Maggiore L, Yu L, Omasits U et al (2016) Quantitative proteomic analysis of Shigella flexneri and Shigella sonnei generalized modules for membrane antigens (GMMA) reveals highly pure preparations. Int J Med Microbiol 306(2):99–108. https://doi.org/10.1016/j.ijmm.2015.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Micoli F, Alfini R, Di Benedetto R et al (2020) GMMA is a versatile platform to design effective multivalent combination vaccines. Vaccine 8(3):540. https://doi.org/10.3390/vaccines8030540

    Article  CAS  Google Scholar 

  13. Giannelli C, Raso MM, Palmieri E et al (2020) Development of a specific and sensitive HPAEC-PAD method for quantification of vi polysaccharide applicable to other polysaccharides containing amino uronic acids. Anal Chem 92(9):6304–6311. https://doi.org/10.1021/acs.analchem.9b05107

    Article  CAS  PubMed  Google Scholar 

  14. De Benedetto G, Alfini R, Cescutti P et al (2017) Characterization of O-antigen delivered by generalized modules for membrane antigens (GMMA) vaccine candidates against nontyphoidal Salmonella. Vaccine 35(3):419–426. https://doi.org/10.1016/j.vaccine.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  15. Rossi O, Aruta MG, Acquaviva A et al (2020) Characterization of competitive ELISA and formulated alhydrogel competitive ELISA (FAcE) for direct quantification of active ingredients in GMMA-based vaccines. Methods Protoc 3(3):62. https://doi.org/10.3390/mps3030062

    Article  CAS  PubMed Central  Google Scholar 

  16. Rossi O, Caboni M, Negrea A et al (2016) Toll-like receptor activation by generalized modules for membrane antigens from lipid A mutants of Salmonella enterica serovars typhimurium and enteritidis. Clin Vaccine Immunol 23(4):304–314. https://doi.org/10.1128/CVI.00023-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Micoli F, Ravenscroft N, Cescutti P et al (2014) Structural analysis of O-polysaccharide chains extracted from different Salmonella typhimurium strains. Carbohydr Res 385:1–8. https://doi.org/10.1016/j.carres.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  18. Biagini M, Spinsanti M, De Angelis G et al (2016) Expression of factor H binding protein in meningococcal strains can vary at least 15-fold and is genetically determined. Proc Natl Acad Sci U S A 113(10):2714–2719. https://doi.org/10.1073/pnas.1521142113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raso MM, Gasperini G, Alfini R et al (2020) GMMA and glycoconjugate approaches compared in mice for the development of a vaccine against Shigella flexneri serotype 6. Vaccine 8(2):160. https://doi.org/10.3390/vaccines8020160

    Article  CAS  Google Scholar 

  20. MacLennan CA, Martin LB, Micoli F (2014) Vaccines against invasive Salmonella disease: current status and future directions. Hum Vaccin Immunother 10(6):1478–1493. https://doi.org/10.4161/hv.29054

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mani S, Wierzba T, Walker RI (2016) Status of vaccine research and development for Shigella. Vaccine 34(26):2887–2894. https://doi.org/10.1016/j.vaccine.2016.02.075

    Article  CAS  PubMed  Google Scholar 

  22. Lyngby J, Olsen LH, Eidem T, Lundanes E, Jantzen E (2002) Quantification of lipopolysaccharides in outer membrane vesicle vaccines against meningococcal disease. High-performance liquid chromatographic determination of the constituent 3-hydroxy-lauric acid. Biologicals 30(1):7–13. https://doi.org/10.1006/biol.2001.0285

    Article  CAS  PubMed  Google Scholar 

  23. Macgee J, Doudoroff M (1954) A new phosphorylated intermediate in glucose oxidation. J Biol Chem 210(2):617–626

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors were involved in drafting the book chapter and approved the final version. The development of this article was sponsored by GlaxoSmithKline Biologicals SA. The authors declare the following interests: FM, CG, and RAL are employees of the GSK group of companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Micoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Micoli, F., Alfini, R., Giannelli, C. (2022). Methods for Assessment of OMV/GMMA Quality and Stability. In: Bidmos, F., Bossé, J., Langford, P. (eds) Bacterial Vaccines. Methods in Molecular Biology, vol 2414. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1900-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1900-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1899-8

  • Online ISBN: 978-1-0716-1900-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation