A Calcium Imaging Approach to Measure Functional Sensitivity of Neurons

  • Protocol
  • First Online:
Cancer Biomarkers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2413))

Abstract

Pain associated with chemotherapy and radiation therapy is one of the most common reasons for discontinuation of these treatments and has a dramatic effect on the quality of life in cancer patients. However, the mechanisms underlying chemotherapy and radiation therapy associated with pain are not well understood. Pain sensations are mediated through sensory neurons whose cell bodies are located in the dorsal root ganglia (DRG). Pain mediators activate these sensory neurons causing an influx of ions, including calcium. One common technique to study pain is to use primary cell culturing mouse DRG to study this calcium influx in vitro. This protocol details from an isolation to culture and maintenance of DRG neurons and functional recording using calcium imaging caused by either pain mediators or neuronal sensitization that are induced by drugs that are often used in the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van den Beuken-van Everdingen MH, Hochstenbach LM, Joosten EA, Tjan-Heijnen VC, Janssen DJ (2016) Update on prevalence of pain in patients with cancer: systematic review and meta-analysis. J Pain Symptom Manag 51(6):1070–1090. e1079. https://doi.org/10.1016/j.jpainsymman.2015.12.340

    Article  Google Scholar 

  2. Kroenke K, Theobald D, Wu JW, Loza JK, Carpenter JS, Tu WZ (2010) The association of depression and pain with health-related quality of life, disability, and health care use in cancer patients. J Pain Symptom Manag 40(3):327–341. https://doi.org/10.1016/j.jpainsymman.2009.12.023

    Article  Google Scholar 

  3. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2(3):201–209. https://doi.org/10.1038/nrc747

    Article  CAS  PubMed  Google Scholar 

  4. Smith TJ, Swainey C, Coyne PJ (2004) Pain management, including intrathecal pumps. Curr Oncol Rep 6(4):291–296. https://doi.org/10.1007/s11912-004-0038-x

    Article  PubMed  Google Scholar 

  5. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284. https://doi.org/10.1016/j.cell.2009.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tracey WD Jr (2017) Nociception. Curr Biol 27(4):R129–R133. https://doi.org/10.1016/j.cub.2017.01.037

    Article  PubMed  Google Scholar 

  7. Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA (2011) TRPV1-lineage neurons are required for thermal sensation. EMBO J 30(3):582–593. https://doi.org/10.1038/emboj.2010.325

    Article  CAS  PubMed  Google Scholar 

  8. Mantyh PW (2006) Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 7(10):797–809. https://doi.org/10.1038/nrn1914

    Article  CAS  PubMed  Google Scholar 

  9. Lautner MA, Ruparel SB, Patil MJ, Hargreaves KM (2011) In vitro sarcoma cells release a lipophilic substance that activates the pain transduction system via TRPV1. Ann Surg Oncol 18(3):866–871. https://doi.org/10.1245/s10434-010-1328-1

    Article  PubMed  Google Scholar 

  10. Nolan MW, Long CT, Marcus KL, Sarmadi S, Roback DM, Fukuyama T, Baeumer W, Lascelles BD (2017) Nocifensive behaviors in mice with radiation-induced oral mucositis. Radiat Res 187(3):397–403. https://doi.org/10.1667/RR14669.1

    Article  CAS  PubMed  Google Scholar 

  11. Naziroglu M, Braidy N (2017) Thermo-sensitive TRP channels: novel targets for treating chemotherapy-induced peripheral pain. Front Physiol 8:1040. https://doi.org/10.3389/fphys.2017.01040

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shim HS, Bae C, Wang J, Lee KH, Hankerd KM, Kim HK, Chung JM, La JH (2019) Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol Pain 15:1744806919840098. https://doi.org/10.1177/1744806919840098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885. https://doi.org/10.1016/j.neuron.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  14. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21. https://doi.org/10.1038/35036035

    Article  CAS  PubMed  Google Scholar 

  15. Jackson AP, Timmerman MP, Bagshaw CR, Ashley CC (1987) The kinetics of calcium binding to fura-2 and indo-1. FEBS Lett 216(1):35–39. https://doi.org/10.1016/0014-5793(87)80752-4

    Article  CAS  PubMed  Google Scholar 

  16. Kao JP, Tsien RY (1988) Ca2+ binding kinetics of fura-2 and azo-1 from temperature-jump relaxation measurements. Biophys J 53(4):635–639. https://doi.org/10.1016/S0006-3495(88)83142-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    Article  CAS  Google Scholar 

  18. Mazorow DL, Millar DB (1990) Quin-2 and fura-2 measure calcium differently. Anal Biochem 186(1):28–30. https://doi.org/10.1016/0003-2697(90)90567-s

    Article  CAS  PubMed  Google Scholar 

  19. Blatter LA, Wier WG (1990) Intracellular diffusion, binding, and compartmentalization of the fluorescent calcium indicators indo-1 and fura-2. Biophys J 58(6):1491–1499. https://doi.org/10.1016/S0006-3495(90)82494-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van den Bergh V, Boens N, De Schryver FC, Ameloot M, Steels P, Gallay J, Vincent M, Kowalczyk A (1995) Photophysics of the fluorescent Ca2+ indicator Fura-2. Biophys J 68(3):1110–1119. https://doi.org/10.1016/S0006-3495(95)80285-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34(11):1423–1442. https://doi.org/10.1016/0028-3908(95)00144-U

    Article  CAS  PubMed  Google Scholar 

  22. Tsien RY, Poenie M (1986) Fluorescence ratio imaging: a new window into intracellular ionic signaling. Trends Biochem Sci 11(11):450–455. https://doi.org/10.1016/0968-0004(86)90245-8

    Article  CAS  Google Scholar 

  23. Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, Failli P, Preti D, Marchetti N, Cavazzini A, Mancini F, Pedretti P, Nilius B, Patacchini R, Geppetti P (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152(7):1621–1631. https://doi.org/10.1016/j.pain.2011.02.051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by start-up fund awarded to SKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wheeler, J.J., Davis, J.M., Mishra, S.K. (2022). A Calcium Imaging Approach to Measure Functional Sensitivity of Neurons. In: Deep, G. (eds) Cancer Biomarkers. Methods in Molecular Biology, vol 2413. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1896-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1896-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1895-0

  • Online ISBN: 978-1-0716-1896-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation