Current Prospects in Peptide-Based Subunit Nanovaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2412))

Abstract

Vaccination renders protection against pathogens via stimulation of the body’s natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boylston A (2012) The origins of inoculation. J R Soc Med 105(7):309–313. https://doi.org/10.1258/jrsm.2012.12k044

    Article  PubMed  PubMed Central  Google Scholar 

  2. Belongia EA, Naleway AL (2003) Smallpox vaccine: the good, the bad, and the ugly. Clin Med Res 1(2):87–92. https://doi.org/10.3121/cmr.1.2.87

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gross CP, Sepkowitz KA (1998) The myth of the medical breakthrough: smallpox, vaccination, and Jenner reconsidered. Int J Infect Dis 3(1):54–60. https://doi.org/10.1016/S1201-9712(98)90096-0

    Article  CAS  PubMed  Google Scholar 

  4. Stern AM, Markel H (2005) The history of vaccines and immunization: familiar patterns, new challenges. Health Aff 24(3):611–621. https://doi.org/10.1377/hlthaff.24.3.611

    Article  Google Scholar 

  5. Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7(2):842–854. https://doi.org/10.1039/c5sc03892h

    Article  CAS  PubMed  Google Scholar 

  6. Baxter D (2007) Active and passive immunity, vaccine types, excipients and licensing. Occup Med 57(8):552–556. https://doi.org/10.1093/occmed/kqm110

    Article  Google Scholar 

  7. Scott C (2004) Classifying vaccines. BioProcesses Inter:14–23

    Google Scholar 

  8. Fujita Y, Taguchi H (2011) Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Cent J 5(1):48. https://doi.org/10.1186/1752-153X-5-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine 9(17):2657–2669. https://doi.org/10.2217/nnm.14.187

    Article  CAS  PubMed  Google Scholar 

  10. De Brito RCF, Cardoso JMDO, Reis LES, Vieira JF, Mathias FAS, Roatt BM, Aguiar-Soares RDDO, Ruiz JC, Resende DM, Reis AB (2018) Peptide vaccines for leishmaniasis. Front Immunol 9:1043–1043. https://doi.org/10.3389/fimmu.2018.01043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicholson Lindsay B (2016) The immune system. Essays Biochem 60(3):275–301. https://doi.org/10.1042/EBC20160017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) The complement system and innate immunity. In: Immunobiology: the immune system in health and disease, 5th edn. Garland Science

    Google Scholar 

  13. ten Broeke T, Wubbolts R, Stoorvogel W (2013) MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 5(12):a016873–a016873. https://doi.org/10.1101/cshperspect.a016873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240. https://doi.org/10.1128/CMR.00046-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaudino SJ, Kumar P (2019) Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Front Immunol 10:360. https://doi.org/10.3389/fimmu.2019.00360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaplin DD (2010) Overview of the immune response. J Allerg Clin Immunol 125(2, Supplement 2):S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980

    Article  Google Scholar 

  17. Bowie A, O’Neill LAJ (2000) The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67(4):508–514. https://doi.org/10.1002/jlb.67.4.508

    Article  CAS  PubMed  Google Scholar 

  18. Clem AS (2011) Fundamentals of vaccine immunology. J Glob Infect Dis 3(1):73–78. https://doi.org/10.4103/0974-777X.77299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liao S, von der Weid PY (2015) Lymphatic system: an active pathway for immune protection. Semin Cell Dev Biol 38:83–89. https://doi.org/10.1016/j.semcdb.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  20. Nevagi RJ, Toth I, Skwarczynski M (2018) 12—Peptide-based vaccines. In: Koutsopoulos S (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, pp 327–358. https://doi.org/10.1016/B978-0-08-100736-5.00012-0

    Chapter  Google Scholar 

  21. Malonis RJ, Lai JR, Vergnolle O (2020) Peptide-based vaccines: current progress and future challenges. Chem Rev 120(6):3210–3229. https://doi.org/10.1021/acs.chemrev.9b00472

    Article  CAS  PubMed  Google Scholar 

  22. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6(5):404–414. https://doi.org/10.1038/nrd2224

    Article  CAS  PubMed  Google Scholar 

  23. Moyle PM, Toth I (2013) Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 8(3):360–376. https://doi.org/10.1002/cmdc.201200487

    Article  CAS  PubMed  Google Scholar 

  24. Black M, Trent A, Tirrell M, Olive C (2010) Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev Vaccines 9(2):157–173. https://doi.org/10.1586/erv.09.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartlett S, Skwarczynski M, Toth I (2020) Lipids as activators of innate immunity in peptide vaccine delivery. Curr Med Chem 27(17):2887–2901

    Article  CAS  PubMed  Google Scholar 

  26. Tsoras AN, Champion JA (2019) Protein and peptide biomaterials for engineered subunit vaccines and immunotherapeutic applications. Ann Rev Chem Biomol Eng 10(1):337–359. https://doi.org/10.1146/annurev-chembioeng-060718-030347

    Article  CAS  Google Scholar 

  27. Azmi F, Ahmad Fuaad AAH, Skwarczynski M, Toth I (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10(3):778–796. https://doi.org/10.4161/hv.27332

    Article  CAS  PubMed  Google Scholar 

  28. Luo Y, Teng Z, Li Y, Wang Q (2015) Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym 122:221–229. https://doi.org/10.1016/j.carbpol.2014.12.084

    Article  CAS  PubMed  Google Scholar 

  29. Nevagi RJ, Skwarczynski M, Toth I (2019) Polymers for subunit vaccine delivery. Eur Polym J 114:397–410. https://doi.org/10.1016/j.eurpolymj.2019.03.009

    Article  CAS  Google Scholar 

  30. Skwarczynski M, Toth I (2011) Peptide-based subunit nanovaccines. Curr Drug Deliv 8(3):282–289

    Article  CAS  PubMed  Google Scholar 

  31. Ranzoni A, Cooper MA (2017) Chapter one—the growing influence of nanotechnology in our lives. In: Skwarczynski M, Toth I (eds) Micro and nanotechnology in vaccine development. William Andrew Publishing, pp 1–20. https://doi.org/10.1016/B978-0-323-39981-4.00001-4

    Chapter  Google Scholar 

  32. Angioletti-Uberti S (2017) Theory, simulations and the design of functionalized nanoparticles for biomedical applications: a soft matter perspective. Comput Material 3(1):48. https://doi.org/10.1038/s41524-017-0050-y

    Article  CAS  Google Scholar 

  33. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115(19):11109–11146. https://doi.org/10.1021/acs.chemrev.5b00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Z, Tan S, Li S, Shen Q, Wang K (2017) Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep 38(2):611–624. https://doi.org/10.3892/or.2017.5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423

    Article  CAS  PubMed  Google Scholar 

  36. Casella CR, Mitchell TC (2008) Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 65(20):3231–3240. https://doi.org/10.1007/s00018-008-8228-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N (2017) Adjuvant system AS01: hel** to overcome the challenges of modern vaccines. Expert Rev Vaccines 16(1):55–63. https://doi.org/10.1080/14760584.2016.1213632

    Article  CAS  PubMed  Google Scholar 

  38. Glück R, Metcalfe IC (2002) New technology platforms in the development of vaccines for the future. Vaccine 20:B10–B16. https://doi.org/10.1016/S0264-410X(02)00513-3

    Article  PubMed  Google Scholar 

  39. Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9(10):1149–1176. https://doi.org/10.1586/erv.10.115

    Article  PubMed  Google Scholar 

  40. Correia-Pinto JF, Csaba N, Alonso MJ (2013) Vaccine delivery carriers: insights and future perspectives. Int J Pharm 440(1):27–38. https://doi.org/10.1016/j.ijpharm.2012.04.047

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Hu X, **ang D (2018) Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv 25(1):1319–1327. https://doi.org/10.1080/10717544.2018.1477857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faruck MO, Zhao L, Hussein WM, Khalil ZG, Capon RJ, Skwarczynski M, Toth I (2020) Polyacrylate–peptide antigen conjugate as a single-dose oral vaccine against group A streptococcus. Vaccines 8(1):23

    Article  CAS  PubMed Central  Google Scholar 

  43. Kö**-Höggård M, Sánchez A, Alonso MJ (2005) Nanoparticles as carriers for nasal vaccine delivery. Expert Rev Vaccines 4(2):185–196. https://doi.org/10.1586/14760584.4.2.185

    Article  CAS  PubMed  Google Scholar 

  44. Fredriksen BN, Grip J (2012) PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine 30(3):656–667. https://doi.org/10.1016/j.vaccine.2011.10.105

    Article  CAS  PubMed  Google Scholar 

  45. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164. https://doi.org/10.1038/nbt1332

    Article  CAS  PubMed  Google Scholar 

  46. Zhu M, Wang R, Nie G (2014) Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother 10(9):2761–2774. https://doi.org/10.4161/hv.29589

    Article  PubMed  PubMed Central  Google Scholar 

  47. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M (2016) Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 39(9):1181–1192. https://doi.org/10.1007/s12272-016-0782-0

    Article  CAS  PubMed  Google Scholar 

  48. Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IFC, Plebanski M (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173(5):3148. https://doi.org/10.4049/jimmunol.173.5.3148

    Article  CAS  PubMed  Google Scholar 

  49. Mottram PL, Leong D, Crimeen-Irwin B, Gloster S, **ang SD, Meanger J, Ghildyal R, Vardaxis N, Plebanski M (2007) Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4(1):73–84. https://doi.org/10.1021/mp060096p

    Article  CAS  PubMed  Google Scholar 

  50. Wilson KL, **ang SD, Plebanski M (2015) Montanide, poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope. Front Microbiol 6:29. https://doi.org/10.3389/fmicb.2015.00029

    Article  PubMed  PubMed Central  Google Scholar 

  51. **ang SD, Wilson KL, Goubier A, Heyerick A, Plebanski M (2018) Design of peptide-based nanovaccines targeting leading antigens from gynecological cancers to induce HLA-A2.1 restricted CD8(+) T cell responses. Front Immunol 9:2968–2968. https://doi.org/10.3389/fimmu.2018.02968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amjadi I, Rabiee M, Hosseini M-S (2013) Anticancer activity of nanoparticles based on PLGA and its co-polymer: in-vitro evaluation. Iran J Pharm Res 12(4):623–634

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Silva AL, Rosalia RA, Sazak A, Carstens MG, Ossendorp F, Oostendorp J, Jiskoot W (2013) Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8+ T cell activation. Eur J Pharm Biopharm 83(3):338–345. https://doi.org/10.1016/j.ejpb.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  54. Silva AL, Rosalia RA, Varypataki E, Sibuea S, Ossendorp F, Jiskoot W (2015) Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 33(7):847–854. https://doi.org/10.1016/j.vaccine.2014.12.059

    Article  CAS  PubMed  Google Scholar 

  55. Chen Q, Bao Y, Burner D, Kaushal S, Zhang Y, Mendoza T, Bouvet M, Ozkan C, Minev B, Ma W (2019) Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8+ T cell immune responses. Drug Deliv Transl Res 9(6):1095–1105. https://doi.org/10.1007/s13346-019-00652-z

    Article  PubMed  Google Scholar 

  56. Kabiri M, Sankian M, Sadri K, Tafaghodi M (2018) Robust mucosal and systemic responses against HTLV-1 by delivery of multi-epitope vaccine in PLGA nanoparticles. Eur J Pharm Biopharm 133:321–330. https://doi.org/10.1016/j.ejpb.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  57. Skwarczynski M, Toth I (2011) Lipid-core-peptide system for self-adjuvanting synthetic vaccine delivery. In: Mark SS (ed) Bioconjugation protocols: strategies and methods. Humana Press, Totowa, NJ, pp 297–308. https://doi.org/10.1007/978-1-61779-151-2_18

    Chapter  Google Scholar 

  58. Marasini N, Khalil ZG, Giddam AK, Ghaffar KA, Hussein WM, Capon RJ, Batzloff MR, Good MF, Skwarczynski M, Toth I (2016) Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against group A streptococcus. Int J Pharm 513(1):410–420. https://doi.org/10.1016/j.ijpharm.2016.09.057

    Article  CAS  PubMed  Google Scholar 

  59. Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W (2016) PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother 12(4):1056–1069. https://doi.org/10.1080/21645515.2015.1117714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li X, Min M, Du N, Gu Y, Hode T, Naylor M, Chen D, Nordquist RE, Chen WR (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023. https://doi.org/10.1155/2013/387023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arca HÇ, Günbeyaz M, Şenel S (2009) Chitosan-based systems for the delivery of vaccine antigens. Expert Rev Vaccines 8(7):937–953. https://doi.org/10.1586/erv.09.47

    Article  CAS  PubMed  Google Scholar 

  62. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62(1):59–82. https://doi.org/10.1016/j.addr.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  63. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68(6):1013–1051. https://doi.org/10.1016/j.reactfunctpolym.2008.03.002

    Article  CAS  Google Scholar 

  64. Snyman D, Hamman JH, Kotze JS, Rollings JE, Kotzé AF (2002) The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride. Carbohydr Polym 50(2):145–150. https://doi.org/10.1016/S0144-8617(02)00008-5

    Article  CAS  Google Scholar 

  65. Akbari MR, Saadati M, Honari H, Ghorbani HM (2019) IpaD-loaded N-trimethyl chitosan nanoparticles can efficiently protect guinea pigs against shigella flexneri. Iran J Immunol 16(3):212–224. https://doi.org/10.22034/iji.2019.80272

    Article  PubMed  Google Scholar 

  66. Jahantigh D, Saadati M, Fasihi Ramandi M, Mousavi M, Zand AM (2014) Novel intranasal vaccine delivery system by chitosan nanofibrous membrane containing N-terminal region of Ipad antigen as a nasal shigellosis vaccine, studies in guinea pigs. J Drug Delivery Sci Technol 24(1):33–39. https://doi.org/10.1016/S1773-2247(14)50005-6

    Article  CAS  Google Scholar 

  67. Zhao L, Skwarczynski M, Toth I (2019) Polyelectrolyte-based platforms for the delivery of peptides and proteins. ACS Biomater Sci Eng 5(10):4937–4950. https://doi.org/10.1021/acsbiomaterials.9b01135

    Article  CAS  PubMed  Google Scholar 

  68. Zhao L, ** W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I (2020) Development of polyelectrolyte complexes for the delivery of peptide-based subunit vaccines against group A streptococcus. Nanomaterials 10(5):823

    Article  CAS  PubMed Central  Google Scholar 

  69. Marasini N, Giddam AK, Khalil ZG, Hussein WM, Capon RJ, Batzloff MR, Good MF, Toth I, Skwarczynski M (2016) Double adjuvanting strategy for peptide-based vaccines: trimethyl chitosan nanoparticles for lipopeptide delivery. Nanomedicine 11(24):3223–3235. https://doi.org/10.2217/nnm-2016-0291

    Article  CAS  PubMed  Google Scholar 

  70. Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth I (2016) Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A streptococcus. Nanomedicine 11(10):1223–1236. https://doi.org/10.2217/nnm.16.36

    Article  CAS  PubMed  Google Scholar 

  71. Nevagi RJ, Khalil ZG, Hussein WM, Powell J, Batzloff MR, Capon RJ, Good MF, Skwarczynski M, Toth I (2018) Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomater 80:278–287. https://doi.org/10.1016/j.actbio.2018.09.037

    Article  CAS  PubMed  Google Scholar 

  72. Nevagi RJ, Dai W, Khalil ZG, Hussein WM, Capon RJ, Skwarczynski M, Toth I (2019) Self-assembly of trimethyl chitosan and poly(anionic amino acid)-peptide antigen conjugate to produce a potent self-adjuvanting nanovaccine delivery system. Bioorg Med Chem 27(14):3082–3088. https://doi.org/10.1016/j.bmc.2019.05.033

    Article  CAS  PubMed  Google Scholar 

  73. Nevagi RJ, Dai W, Khalil ZG, Hussein WM, Capon RJ, Skwarczynski M, Toth I (2019) Structure-activity relationship of group A streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. Eur J Med Chem 179:100–108. https://doi.org/10.1016/j.ejmech.2019.06.047

    Article  CAS  PubMed  Google Scholar 

  74. Zhao G, Chandrudu S, Skwarczynski M, Toth I (2017) The application of self-assembled nanostructures in peptide-based subunit vaccine development. Eur Polym J 93:670–681. https://doi.org/10.1016/j.eurpolymj.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Eskandari S, Guerin T, Toth I, Stephenson RJ (2017) Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 110-111:169–187. https://doi.org/10.1016/j.addr.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  76. Skwarczynski M, Zaman M, Urbani CN, Lin IC, Jia Z, Batzloff MR, Good MF, Monteiro MJ, Toth I (2010) Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew Chem 122(33):5878–5881

    Article  Google Scholar 

  77. Zaman M, Skwarczynski M, Malcolm JM, Urbani CN, Jia Z, Batzloff MR, Good MF, Monteiro MJ, Toth I (2011) Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomed Nanotechnol Biol Med 7(2):168–173. https://doi.org/10.1016/j.nano.2010.10.002

    Article  CAS  Google Scholar 

  78. Ahmad Fuaad AAH, Jia Z, Zaman M, Hartas J, Ziora ZM, Lin IC, Moyle PM, Batzloff MR, Good MF, Monteiro MJ, Skwarczynski M, Toth I (2013) Polymer–peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine 9(1):35–43. https://doi.org/10.2217/nnm.13.7

    Article  CAS  PubMed  Google Scholar 

  79. Chandrudu S, Bartlett S, Khalil ZG, Jia Z, Hussein WM, Capon RJ, Batzloff MR, Good MF, Monteiro MJ, Skwarczynski M, Toth I (2016) Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Ther Deliv 7(9):601–609. https://doi.org/10.4155/tde-2016-0037

    Article  CAS  PubMed  Google Scholar 

  80. Liu T-Y, Hussein WM, Giddam AK, Jia Z, Reiman JM, Zaman M, McMillan NAJ, Good MF, Monteiro MJ, Toth I, Skwarczynski M (2015) Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine. J Med Chem 58(2):888–896. https://doi.org/10.1021/jm501514h

    Article  CAS  PubMed  Google Scholar 

  81. Liu TY, Hussein WM, Jia Z, Ziora ZM, McMillan NA, Monteiro MJ, Toth I, Skwarczynski M (2013) Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 14(8):2798–2806. https://doi.org/10.1021/bm400626w

    Article  CAS  PubMed  Google Scholar 

  82. Liu TY, Giddam AK, Hussein WM, Jia Z, McMillan NA, Monteiro MJ, Toth I, Skwarczynski M (2015) Self-adjuvanting therapeutic peptide-based vaccine induce CD8+ cytotoxic T lymphocyte responses in a murine human papillomavirus tumor model. Curr Drug Deliv 12(1):3–8

    Article  CAS  PubMed  Google Scholar 

  83. Hussein WM, Liu T-Y, Jia Z, McMillan NAJ, Monteiro MJ, Toth I, Skwarczynski M (2016) Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorg Med Chem 24(18):4372–4380. https://doi.org/10.1016/j.bmc.2016.07.036

    Article  CAS  PubMed  Google Scholar 

  84. Khongkow M, Liu T-Y, Bartlett S, Hussein WM, Nevagi R, Jia Z, Monteiro MJ, Wells J, Ruktanonchai UR, Skwarczynski M (2018) Liposomal formulation of polyacrylate-peptide conjugate as a new vaccine candidate against cervical cancer. Precision Nanomed 1(3):186–196

    Google Scholar 

  85. Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, Giddam AK, Khalil ZG, Pandey M, Shibu MA (2020) Poly (amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Sci Adv 6(5):eaax2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bartlett S, Skwarczynski M, **e X, Toth I, Loukas A, Eichenberger RM (2020) Development of natural and unnatural amino acid delivery systems against hookworm infection. Prec Nanomed 3:471–482. https://doi.org/10.33218/prnano3(1).191210.1

    Article  Google Scholar 

  87. Skwarczynski M, Kowapradit J, Ziora ZM, Toth I (2013) pH-triggered peptide self-assembly into fibrils: a potential peptide-based subunit vaccine delivery platform. Biochem Compound 1(1)

    Google Scholar 

  88. Wen Y, Collier JH (2015) Supramolecular peptide vaccines: tuning adaptive immunity. Curr Opin Immunol 35:73–79. https://doi.org/10.1016/j.coi.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun T, Han H, Hudalla GA, Wen Y, Pompano RR, Collier JH (2016) Thermal stability of self-assembled peptide vaccine materials. Acta Biomater 30:62–71. https://doi.org/10.1016/j.actbio.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  90. Rudra JS, Sun T, Bird KC, Daniels MD, Gasiorowski JZ, Chong AS, Collier JH (2012) Modulating adaptive immune responses to peptide self-assemblies. ACS Nano 6(2):1557–1564. https://doi.org/10.1021/nn204530r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rudra JS, Tian YF, Jung JP, Collier JH (2010) A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A 107(2):622–627. https://doi.org/10.1073/pnas.0912124107

    Article  PubMed  Google Scholar 

  92. Rudra JS, Ding Y, Neelakantan H, Ding C, Appavu R, Stutz S, Snook JD, Chen H, Cunningham KA, Zhou J (2016) Suppression of cocaine-evoked hyperactivity by self-adjuvanting and multivalent peptide nanofiber vaccines. ACS Chem Nerosci 7(5):546–552. https://doi.org/10.1021/acschemneuro.5b00345

    Article  CAS  Google Scholar 

  93. Rudra JS, Mishra S, Chong AS, Mitchell RA, Nardin EH, Nussenzweig V, Collier JH (2012) Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 33(27):6476–6484. https://doi.org/10.1016/j.biomaterials.2012.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Si Y, Wen Y, Kelly SH, Chong AS, Collier JH (2018) Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8+ T cell responses. J Control Release 282:120–130. https://doi.org/10.1016/j.jconrel.2018.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang Z-H, Shi L, Ma J-W, Sun Z-Y, Cai H, Chen Y-X, Zhao Y-F, Li Y-M (2012) A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J Am Chem Soc 134(21):8730–8733. https://doi.org/10.1021/ja211725s

    Article  CAS  PubMed  Google Scholar 

  96. Wu Y, Norberg PK, Reap EA, Congdon KL, Fries CN, Kelly SH, Sampson JH, Conticello VP, Collier JH (2017) A supramolecular vaccine platform based on α-helical peptide nanofibers. ACS Biomater Sci Eng 3(12):3128–3132. https://doi.org/10.1021/acsbiomaterials.7b00561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hussein WM, Liu T-Y, Skwarczynski M, Toth I (2014) Toll-like receptor agonists: a patent review (2011–2013). Expert Opin Ther Pat 24(4):453–470. https://doi.org/10.1517/13543776.2014.880691

    Article  CAS  PubMed  Google Scholar 

  98. Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M (2018) Toll-like receptor agonist conjugation: a chemical perspective. Bioconjug Chem 29(3):587–603. https://doi.org/10.1021/acs.bioconjchem.7b00808

    Article  CAS  PubMed  Google Scholar 

  99. Buwitt-Beckmann U, Heine H, Wiesmüller K-H, Jung G, Brock R, Ulmer AJ (2005) Lipopeptide structure determines TLR2 dependent cell activation level. FEBS J 272(24):6354–6364. https://doi.org/10.1111/j.1742-4658.2005.05029.x

    Article  CAS  PubMed  Google Scholar 

  100. Khan S, Weterings JJ, Britten CM, de Jong AR, Graafland D, Melief CJM, van der Burg SH, van der Marel G, Overkleeft HS, Filippov DV, Ossendorp F (2009) Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells. Mol Immunol 46(6):1084–1091. https://doi.org/10.1016/j.molimm.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  101. Zaman M, Toth I (2013) Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure-activity relationships. Front Immunol 4:318. https://doi.org/10.3389/fimmu.2013.00318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC (2002) Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J Immunol 169(9):4905. https://doi.org/10.4049/jimmunol.169.9.4905

    Article  PubMed  Google Scholar 

  103. Chua BY, Zeng W, Lau YF, Jackson DC (2007) Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups. Vaccine 25(1):92–101. https://doi.org/10.1016/j.vaccine.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  104. Moyle PM, Dai W, Zhang Y, Batzloff MR, Good MF, Toth I (2014) Site-specific incorporation of three toll-like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: application to group A streptococcal vaccines. Bioconjug Chem 25(5):965–978. https://doi.org/10.1021/bc500108b

    Article  CAS  PubMed  Google Scholar 

  105. Trent A, Ulery BD, Black MJ, Barrett JC, Liang S, Kostenko Y, David NA, Tirrell MV (2015) Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J 17(2):380–388. https://doi.org/10.1208/s12248-014-9707-3

    Article  CAS  PubMed  Google Scholar 

  106. Barrett JC, Ulery BD, Trent A, Liang S, David NA, Tirrell MV (2017) Modular peptide amphiphile micelles improving an antibody-mediated immune response to group A streptococcus. ACS Biomater Sci Eng 3(2):144–152. https://doi.org/10.1021/acsbiomaterials.6b00422

    Article  CAS  PubMed  Google Scholar 

  107. Moyle PM, Toth I (2008) Self-adjuvanting lipopeptide vaccines. Curr Med Chem 15(5):506–516

    Article  CAS  PubMed  Google Scholar 

  108. Apte SH, Groves PL, Skwarczynski M, Fujita Y, Chang C, Toth I, Doolan DL (2012) Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model. PLoS One 7(8):e40928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ahmad Fuaad AAH, Roubille R, Pearson MS, Pickering DA, Loukas AC, Skwarczynski M, Toth I (2015) The use of a conformational cathepsin D-derived epitope for vaccine development against Schistosoma mansoni. Bioorg Med Chem 23(6):1307–1312. https://doi.org/10.1016/j.bmc.2015.01.033

    Article  CAS  PubMed  Google Scholar 

  110. Bartlett S, Eichenberger RM, Nevagi RJ, Ghaffar KA, Marasini N, Dai Y, Loukas A, Toth I, Skwarczynski M (2020) Lipopeptide-based oral vaccine against hookworm infection. J Infect Dis 221(6):934–942. https://doi.org/10.1093/infdis/jiz528

    Article  CAS  PubMed  Google Scholar 

  111. Fuaad AAHA, Pearson MS, Pickering DA, Becker L, Zhao G, Loukas AC, Skwarczynski M, Toth I (2015) Lipopeptide nanoparticles: development of vaccines against hookworm parasite. ChemMedChem 10(10):1647–1654. https://doi.org/10.1002/cmdc.201500227

    Article  CAS  PubMed  Google Scholar 

  112. Chan A, Hussein WM, Ghaffar KA, Marasini N, Mostafa A, Eskandari S, Batzloff MR, Good MF, Skwarczynski M, Toth I (2016) Structure–activity relationship of lipid core peptide-based group A streptococcus vaccine candidates. Bioorg Med Chem 24(14):3095–3101. https://doi.org/10.1016/j.bmc.2016.03.063

    Article  CAS  PubMed  Google Scholar 

  113. Zaman M, Chandrudu S, Giddam AK, Reiman J, Skwarczynski M, McPhun V, Moyle PM, Batzloff MR, Good MF, Toth I (2014) Group A streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine 9(17):2613–2624. https://doi.org/10.2217/nnm.14.190

    Article  CAS  PubMed  Google Scholar 

  114. Jaberolansar N, Chappell KJ, Watterson D, Bermingham IM, Toth I, Young PR, Skwarczynski M (2017) Induction of high titred, non-neutralising antibodies by self-adjuvanting peptide epitopes derived from the respiratory syncytial virus fusion protein. Sci Rep 7(1):11130. https://doi.org/10.1038/s41598-017-10415-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Azuar A, Zhao L, Hei TT, Nevagi RJ, Bartlett S, Hussein WM, Khalil ZG, Capon RJ, Toth I, Skwarczynski M (2019) cholic acid-based delivery system for vaccine candidates against group A streptococcus. ACS Med Chem Lett 10(9):1253–1259. https://doi.org/10.1021/acsmedchemlett.9b00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Giddam AK, Reiman JM, Zaman M, Skwarczynski M, Toth I, Good MF (2016) A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria. Acta Biomater 44:295–303. https://doi.org/10.1016/j.actbio.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  117. Marasini N, Ghaffar KA, Skwarczynski M, Toth I (2017) Liposomes as a vaccine delivery system. In: Skwarczynski M, Toth I (eds) Micro- and nanotechnology in vaccine development. William Andrew, Norwich, pp 221–239

    Chapter  Google Scholar 

  118. Ghaffar KA, Giddam AK, Zaman M, Skwarczynski M, Toth I (2014) Liposomes as nanovaccine delivery systems. Curr Top Med Chem 14(9):1194–1208

    Article  PubMed  Google Scholar 

  119. Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccine 2(6):159–182. https://doi.org/10.1177/2051013614541440

    Article  CAS  Google Scholar 

  120. Pati R, Shevtsov M, Sonawane A (2018) Nanoparticle vaccines against infectious diseases. Front Immunol 9:2224. https://doi.org/10.3389/fimmu.2018.02224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Allison AC, Gregoriadis G (1974) Liposomes as immunological adjuvants. Nature 252(5480):252–252. https://doi.org/10.1038/252252a0

    Article  CAS  PubMed  Google Scholar 

  122. Shariat S, Badiee A, Jalali SA, Mansourian M, Yazdani M, Mortazavi SA, Jaafari MR (2014) P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett 355(1):54–60. https://doi.org/10.1016/j.canlet.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  123. Yazdani M, Amir Jalali S, Badiee A, Shariat S, Mansourian M, Arabi L, Abbasi A, Saberi Z, Reza Jaafari M (2017) Stimulation of tumor-specific immunity by p5 HER-2/neu generated peptide encapsulated in nano-liposomes with high phase transition temperature phospholipids. Curr Drug Deliv 14(4):492–502

    Article  CAS  PubMed  Google Scholar 

  124. Rastakhiz S, Yazdani M, Shariat S, Arab A, Momtazi-Borojeni AA, Barati N, Mansourian M, Amin M, Abbasi A, Saberi Z, Jalali SA, Badiee A, Jaafari MR (2019) Preparation of nanoliposomes linked to HER2/neu-derived (P5) peptide containing MPL adjuvant as vaccine against breast cancer. J Cell Biochem 120(2):1294–1303. https://doi.org/10.1002/jcb.27090

    Article  CAS  Google Scholar 

  125. Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, Agger EM, Andersen P (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate)—a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718(1):22–31. https://doi.org/10.1016/j.bbamem.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  126. van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O’Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, Ruhwald M, de Visser AW, Agger EM, Ottenhoff THM, Kromann I, Andersen P (2014) A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 32(52):7098–7107. https://doi.org/10.1016/j.vaccine.2014.10.036

    Article  CAS  PubMed  Google Scholar 

  127. Beck Z, Torres OB, Matyas GR, Lanar DE, Alving CR (2018) Immune response to antigen adsorbed to aluminum hydroxide particles: effects of co-adsorption of ALF or ALFQ adjuvant to the aluminum-antigen complex. J Control Release 275:12–19. https://doi.org/10.1016/j.jconrel.2018.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z (2020) Army liposome formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 19(3):279–292. https://doi.org/10.1080/14760584.2020.1745636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Morelli AB, Becher D, Koernig S, Silva A, Drane D, Maraskovsky E (2012) ISCOMATRIX: a novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J Med Microbiol 61(7):935–943

    Article  CAS  Google Scholar 

  130. Kabiri M, Sankian M, Hosseinpour M, Tafaghodi M (2018) The novel immunogenic chimeric peptide vaccine to elicit potent cellular and mucosal immune responses against HTLV-1. Int J Pharm 549(1):404–414. https://doi.org/10.1016/j.ijpharm.2018.07.069

    Article  CAS  PubMed  Google Scholar 

  131. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, Scott AM, Maraskovsky E, McArthur G, MacGregor D, Sturrock S, Tai TY, Green S, Cuthbertson A, Maher D, Miloradovic L, Mitchell SV, Ritter G, Jungbluth AA, Chen Y-T, Gnjatic S, Hoffman EW, Old LJ, Cebon JS (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc Natl Acad Sci U S A 101(29):10697. https://doi.org/10.1073/pnas.0403572101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cebon JS, Gore M, Thompson JF, Davis ID, McArthur GA, Walpole E, Smithers M, Cerundolo V, Dunbar PR, MacGregor D, Fisher C, Millward M, Nathan P, Findlay MPN, Hersey P, Evans TRJ, Ottensmeier CH, Marsden J, Dalgleish AG, Corrie PG, Maria M, Brimble M, Williams G, Winkler S, Jackson HM, Endo-Munoz L, Tutuka CSA, Venhaus R, Old LJ, Haack D, Maraskovsky E, Behren A, Chen W (2020) Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma. J Immunother Cancer 8(1):e000410. https://doi.org/10.1136/jitc-2019-000410

    Article  PubMed  PubMed Central  Google Scholar 

  133. Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D (2019) Nanoparticle-based vaccines against respiratory viruses. Front Immunol 10:22–22. https://doi.org/10.3389/fimmu.2019.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xu H, Ruwona TB, Thakkar SG, Chen Y, Zeng M, Cui Z (2017) Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum Vaccin Immunother 13(11):2688–2694. https://doi.org/10.1080/21645515.2017.1365995

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lindblad EB (2004) Aluminium compounds for use in vaccines. Immunol Cell Biol 82(5):497–505. https://doi.org/10.1111/j.0818-9641.2004.01286.x

    Article  CAS  PubMed  Google Scholar 

  136. Alshanqiti FM, Al-Masaudi SB, Al-He** AM, Redwan EM (2017) Adjuvants for Clostridium tetani and Clostridium diphtheriae vaccines updating. Hum Antibodies 25:23–29. https://doi.org/10.3233/HAB-160302

    Article  PubMed  Google Scholar 

  137. Glenny A (1926) The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol 29:38–45

    Google Scholar 

  138. Ramanathan VD, Badenoch-Jones P, Turk JL (1979) Complement activation by aluminium and zirconium compounds. Immunology 37(4):881–888

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126. https://doi.org/10.1038/nature06939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Monie TP (2017) Section 5—connecting the innate and adaptive immune responses. In: Monie TP (ed) The innate immune system. Academic, pp 171–187. https://doi.org/10.1016/B978-0-12-804464-3.00005-3

    Chapter  Google Scholar 

  141. Tomljenovic L, Shaw CA (2011) Aluminum vaccine adjuvants: are they safe? Curr Med Chem 18(17):2630–2637

    Article  CAS  PubMed  Google Scholar 

  142. Fox CB, Orr MT, Van Hoeven N, Parker SC, Mikasa TJT, Phan T, Beebe EA, Nana GI, Joshi SW, Tomai MA, Elvecrog J, Fouts TR, Reed SG (2016) Adsorption of a synthetic TLR7/8 ligand to aluminum oxyhydroxide for enhanced vaccine adjuvant activity: a formulation approach. J Control Release 244:98–107. https://doi.org/10.1016/j.jconrel.2016.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Orr MT, Khandhar AP, Seydoux E, Liang H, Gage E, Mikasa T, Beebe EL, Rintala ND, Persson KH, Ahniyaz A, Carter D, Reed SG, Fox CB (2019) Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. Vaccines 4(1):1. https://doi.org/10.1038/s41541-018-0094-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li X, Hufnagel S, Xu H, Valdes SA, Thakkar SG, Cui Z, Celio H (2017) Aluminum (Oxy)hydroxide nanosticks synthesized in bicontinuous reverse microemulsion have potent vaccine adjuvant activity. ACS Appl Mater Interfaces 9(27):22893–22901. https://doi.org/10.1021/acsami.7b03965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Frey A, Mantis N, Kozlowski PA, Quayle AJ, Bajardi A, Perdomo JJ, Robey FA, Neutra MR (1999) Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles. Vaccine 17(23):3007–3019. https://doi.org/10.1016/S0264-410X(99)00163-2

    Article  CAS  PubMed  Google Scholar 

  146. Fox CB, Kramer RM, Barnes VL, Dowling QM, Vedvick TS (2013) Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccine 1(1):7–20. https://doi.org/10.1177/2051013613480144

    Article  CAS  Google Scholar 

  147. Masson J-D, Thibaudon M, Bélec L, Crépeaux G (2017) Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines 16(3):289–299. https://doi.org/10.1080/14760584.2017.1244484

    Article  CAS  PubMed  Google Scholar 

  148. Relyveld E, Bengounia A, Huet M, Kreeftenberg JG (1991) Antibody response of pregnant women to two different adsorbed tetanus toxoids. Vaccine 9(5):369–372. https://doi.org/10.1016/0264-410X(91)90066-F

    Article  CAS  PubMed  Google Scholar 

  149. Lin Y, Wang X, Huang X, Zhang J, **a N, Zhao Q (2017) Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 16(9):895–906. https://doi.org/10.1080/14760584.2017.1355733

    Article  CAS  PubMed  Google Scholar 

  150. Relyveld E (1980) Current developments in production and testing of tetanus and diphtheria vaccines. Prog Clin Biol Res 47:51

    CAS  PubMed  Google Scholar 

  151. Relyveld E (1985) Immunological, prophylactic and standardization aspects in tetanus. In: Proceedings of the seventh international conference on tetanus. Gangemi, Rome, pp 215–227

    Google Scholar 

  152. Knuschke T, Rotan O, Bayer W, Sokolova V, Hansen W, Sparwasser T, Dittmer U, Epple M, Buer J, Westendorf AM (2016) Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection. Retrovirology 13(1):24. https://doi.org/10.1186/s12977-016-0258-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sokolova V, Shi Z, Huang S, Du Y, Kopp M, Frede A, Knuschke T, Buer J, Yang D, Wu J, Westendorf AM, Epple M (2017) Delivery of the TLR ligand poly(I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Acta Biomater 64:401–410. https://doi.org/10.1016/j.actbio.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  154. Heße C, Kollenda S, Rotan O, Pastille E, Adamczyk A, Wenzek C, Hansen W, Epple M, Buer J, Westendorf AM, Knuschke T (2019) A tumor-peptide–based nanoparticle vaccine elicits efficient tumor growth control in antitumor immunotherapy. Mol Cancer Ther 18(6):1069. https://doi.org/10.1158/1535-7163.MCT-18-0764

    Article  PubMed  Google Scholar 

  155. Salazar-González JA, González-Ortega O, Rosales-Mendoza S (2015) Gold nanoparticles and vaccine development. Expert Rev Vaccines 14(9):1197–1211. https://doi.org/10.1586/14760584.2015.1064772

    Article  CAS  PubMed  Google Scholar 

  156. Chen Y-S, Hung Y-C, Lin W-H, Huang GS (2010) Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 21(19):195101. https://doi.org/10.1088/0957-4484/21/19/195101

    Article  CAS  PubMed  Google Scholar 

  157. Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, Kim H, Kim J, Shin E-C, Jon S (2017) Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release 256:56–67. https://doi.org/10.1016/j.jconrel.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  158. Staroverov SA, Volkov AA, Mezhenny PV, Domnitsky IY, Fomin AS, Kozlov SV, Dykman LA, Guliy OI (2019) Prospects for the use of spherical gold nanoparticles in immunization. Appl Microbiol Biotechnol 103(1):437–447

    Article  CAS  PubMed  Google Scholar 

  159. Tao W, Gill HS (2015) M2e-immobilized gold nanoparticles as influenza A vaccine: role of soluble M2e and longevity of protection. Vaccine 33(20):2307–2315. https://doi.org/10.1016/j.vaccine.2015.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tao W, Hurst BL, Shakya AK, Uddin MJ, Ingrole RSJ, Hernandez-Sanabria M, Arya RP, Bimler L, Paust S, Tarbet EB, Gill HS (2017) Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antiviral Res 141:62–72. https://doi.org/10.1016/j.antiviral.2017.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605

    Article  CAS  PubMed  Google Scholar 

  162. An M, Li M, ** J, Liu H (2017) Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl Mater Interfaces 9(28):23466–23475. https://doi.org/10.1021/acsami.7b06024

    Article  CAS  PubMed  Google Scholar 

  163. Cha BG, Jeong JH, Kim J (2018) Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Central Sci 4(4):484–492. https://doi.org/10.1021/acscentsci.8b00035

    Article  CAS  Google Scholar 

  164. Wang X, Li X, Ito A, Yoshiyuki K, Sogo Y, Watanabe Y, Yamazaki A, Ohno T, Tsuji NM (2016) Hollow structure improved anti-cancer immunity of mesoporous silica nanospheres in vivo. Small 12(26):3510–3515

    Article  CAS  PubMed  Google Scholar 

  165. Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N (2013) Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale 5(12):5167–5179. https://doi.org/10.1039/C3NR00357D

    Article  CAS  PubMed  Google Scholar 

  166. Versiani AF, Astigarraga RG, Rocha ESO, Barboza APM, Kroon EG, Rachid MA, Souza DG, Ladeira LO, Barbosa-Stancioli EF, Jorio A, Da Fonseca FG (2017) Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J Nanobiotechnol 15(1):26. https://doi.org/10.1186/s12951-017-0259-4

    Article  CAS  Google Scholar 

  167. Hassan HAFM, Smyth L, Rubio N, Ratnasothy K, Wang JTW, Bansal SS, Summers HD, Diebold SS, Lombardi G, Al-Jamal KT (2016) Carbon nanotubes’ surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo. J Control Release 225:205–216. https://doi.org/10.1016/j.jconrel.2016.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hassan HAFM, Smyth L, Wang JTW, Costa PM, Ratnasothy K, Diebold SS, Lombardi G, Al-Jamal KT (2016) Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials 104:310–322. https://doi.org/10.1016/j.biomaterials.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang C, Li L-H, Wang J, Zhao Z, Li J, Tu X, Huang A-G, Wang G-X, Zhu B (2018) Enhanced protective immunity against spring viremia of carp virus infection can be induced by recombinant subunit vaccine conjugated to single-walled carbon nanotubes. Vaccine 36(42):6334–6344. https://doi.org/10.1016/j.vaccine.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  170. Gottardi R, Douradinha B (2013) Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer. J Nanobiotechnol 11(1):30. https://doi.org/10.1186/1477-3155-11-30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Istvan Toth or Mariusz Skwarczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koirala, P., Bashiri, S., Toth, I., Skwarczynski, M. (2022). Current Prospects in Peptide-Based Subunit Nanovaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2412. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1892-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1892-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1891-2

  • Online ISBN: 978-1-0716-1892-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation