Reverse Genetics and Its Usage in the Development of Vaccine Against Poultry Diseases

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2411))

Abstract

Vaccines are the most effective and economic way of combating poultry viruses. However, the use of traditional live-attenuated poultry vaccines has problems such as antigenic differences with the currently circulating strains of viruses and the risk of reversion to virulence. In veterinary medicine, reverse genetics is applied to solve these problems by develo** genotype-matched vaccines, better attenuated and effective live vaccines, broad-spectrum vaccine vectors, bivalent vaccines, and genetically tagged recombinant vaccines that facilitate the serological differentiation of vaccinated animals from infected animals. In this chapter, we discuss reverse genetics as a tool for the development of recombinant vaccines against economically devastating poultry viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214(4523):916–919

    Article  CAS  PubMed  Google Scholar 

  2. Conzelmann KK (1998) Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu Rev Genet 32:123–162

    Article  CAS  PubMed  Google Scholar 

  3. Roberts A, Rose JK (1999) Redesign and genetic dissection of the rhabdoviruses. Adv Virus Res 53:301–319

    Article  CAS  PubMed  Google Scholar 

  4. Bridgen A, Elliott RM (1996) Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 93(26):15400–15404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fodor E et al (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73(11):9679–9682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoffmann E et al (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97(11):6108–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neumann G, Whitt MA, Kawaoka Y (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J Gen Virol 83(Pt 11):2635–2662

    Article  CAS  PubMed  Google Scholar 

  8. Mebatsion T (2005) Reverse genetics with animal viruses. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  9. OIE (2014) Avian influenza. Terrestrial animal health code [online]. OIE, Paris

    Google Scholar 

  10. CDC (2015) Avian flu [Website online]

    Google Scholar 

  11. To KK et al (2013) The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. Lancet Infect Dis 13(9):809–821

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen H et al (2004) The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A 101(28):10452–10457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. WHO (2013) Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO [online]

    Google Scholar 

  14. WHO (2014) WHO risk assessment. Human infections with avian influenza A(H7N9) virus

    Google Scholar 

  15. Palese P, Schulman JL (1976) Map** of the influenza virus genome: identification of the hemagglutinin and the neuraminidase genes. Proc Natl Acad Sci U S A 73(6):2142–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoon SW, Webby RJ, Webster RG (2014) Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol 385:359–375

    PubMed  Google Scholar 

  17. Marsh GA, Tannock GA (2005) The role of reverse genetics in the development of vaccines against respiratory viruses. Expert Opin Biol Ther 5(3):369–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uchida Y, Takemae N, Saito T (2014) Application of reverse genetics for producing attenuated vaccine strains against highly pathogenic avian influenza viruses. J Vet Med Sci 76(8):1111–1117

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bhatia S et al (2016) Reverse genetics based rgH5N2 vaccine provides protection against high dose challenge of H5N1 avian influenza virus in chicken. Microb Pathog 97:172–177

    Article  CAS  PubMed  Google Scholar 

  20. Ibrahim M et al (2015) Development of broadly reactive H5N1 vaccine against different Egyptian H5N1 viruses. Vaccine 33(23):2670–2677

    Article  CAS  PubMed  Google Scholar 

  21. Tian G et al (2005) Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 341(1):153–162

    Article  CAS  PubMed  Google Scholar 

  22. Steel J et al (2009) Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol 83(4):1742–1753

    Article  CAS  PubMed  Google Scholar 

  23. Han P-F et al (2015) H5N1 influenza A virus with K193E and G225E double mutations in haemagglutinin is attenuated and immunogenic in mice. J Gen Virol 96(9):2522–2530

    Article  CAS  PubMed  Google Scholar 

  24. Hu Z et al (2011) Generation of a genotype VII Newcastle disease virus vaccine candidate with high yield in embryonated chicken eggs. Avian Dis 55(3):391–397

    Article  PubMed  Google Scholar 

  25. **ao S et al (2012) Generation by reverse genetics of an effective, stable, live-attenuated Newcastle disease virus vaccine based on a currently circulating, highly virulent Indonesian strain. PLoS One 7(12):e52751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu S et al (2009) A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics. Vaccine 27(6):904–910

    Article  CAS  PubMed  Google Scholar 

  27. Yan Y et al (2009) Role of untranslated regions of the hemagglutinin-neuraminidase gene in replication and pathogenicity of Newcastle disease virus. J Virol 83(11):5943–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mebatsion T et al (2001) A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. J Virol 75(1):420–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao Y et al (2019) S gene and 5a accessory gene are responsible for the attenuation of virulent infectious bronchitis coronavirus. Virology 533:12–20

    Article  CAS  PubMed  Google Scholar 

  30. van Beurden SJ et al (2018) Recombinant live attenuated avian coronavirus vaccines with deletions in the accessory genes 3ab and/or 5ab protect against infectious bronchitis in chickens. Vaccine 36(8):1085–1092

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tsai C-T, Wu H-Y, Wang C-H (2020) Genetic sequence changes related to the attenuation of avian infectious bronchitis virus strain TW2575/98. Virus Genes 56(3):369–379

    Article  CAS  PubMed  Google Scholar 

  32. Alexander DJ, Senne D (2008) Newcastle disease and other avian paramyxovirus and pneumovirus infection. In: Saif YM (ed) Diseases of poultry, 12th edn. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  33. Lamb R et al (2005) In: Fauquet CM et al (eds) The negative sense single stranded RNA viruses. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  34. Samal SK (2011) Newcastle Disease and related avian paramyxoviruses. In: Samal SK (ed) The biology of paramyxoviruses. Caister Academic Press, Norfolk

    Google Scholar 

  35. Hanson RP, Brandly CA (1955) Identification of vaccine strains of Newcastle disease virus. Science 122(3160):156–157

    Article  CAS  PubMed  Google Scholar 

  36. Aldous EW et al (2004) A molecular epidemiological investigation of isolates of the variant avian paramyxovirus type 1 virus (PPMV-1) responsible for the 1978 to present panzootic in pigeons. Avian Pathol 33(2):258–269

    Article  CAS  PubMed  Google Scholar 

  37. Cattoli G et al (2009) Emergence of a new genetic lineage of Newcastle disease virus in West and Central Africa--implications for diagnosis and control. Vet Microbiol 142(3–4):168–176

    PubMed  Google Scholar 

  38. Dimitrov KM et al (2019) Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect Genet Evol 74:103917

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu XF et al (2003) Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001. Arch Virol 148(7):1387–1403

    Article  CAS  PubMed  Google Scholar 

  40. Nath B, Barman NN, Kumar S (2015) Molecular characterization of Newcastle disease virus strains isolated from different outbreaks in Northeast India during 2014-15. Microb Pathog 91:85–91

    Article  PubMed  Google Scholar 

  41. Nath B, Kumar S (2017) Emerging variant of genotype XIII Newcastle disease virus from Northeast India. Acta Trop 172:64–69

    Article  PubMed  Google Scholar 

  42. Perozo F, Marcano R, Afonso CL (2012) Biological and phylogenetic characterization of a genotype VII Newcastle disease virus from Venezuela: efficacy of field vaccination. J Clin Microbiol 50(4):1204–1208

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang Z et al (2003) Recombinant Newcastle disease virus as a vaccine vector. Poult Sci 82(6):899–906

    Article  CAS  PubMed  Google Scholar 

  44. Choi KS (2017) Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines. Clin Exp Vaccine Res 6(2):72–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ge J et al (2007) Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol 81(1):150–158

    Article  CAS  PubMed  Google Scholar 

  46. Steglich C et al (2013) Chimeric Newcastle disease virus protects chickens against avian influenza in the presence of maternally derived NDV immunity. PLoS One 8(9):e72530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park MS et al (2006) Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. Proc Natl Acad Sci U S A 103(21):8203–8208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang Z et al (2004) A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV. J Virol 78(18):10054–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Toro H et al (2014) Infectious bronchitis virus S2 expressed from recombinant virus confers broad protection against challenge. Avian Dis 58(1):83–89

    Article  PubMed  Google Scholar 

  50. Kanabagatte Basavarajappa M et al (2014) A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine 32(28):3555–3563

    Article  PubMed  Google Scholar 

  51. Zhao W et al (2014) Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges. J Virol 88(15):8397–8406

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hu H et al (2011) Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine 29(47):8624–8633

    Article  CAS  PubMed  Google Scholar 

  53. Peeters BP et al (2001) Generation of a recombinant chimeric Newcastle disease virus vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine 19(13–14):1616–1627

    Article  CAS  PubMed  Google Scholar 

  54. Cavanagh D, Naqi SA (2003) Infectious bronchitis. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (eds) Diseases of poultry. Iowa state University Press, Ames

    Google Scholar 

  55. de Wit JJ et al (2011) Induction of cystic oviducts and protection against early challenge with infectious bronchitis virus serotype D388 (genotype QX) by maternally derived antibodies and by early vaccination. Avian Pathol 40(5):463–471

    Article  PubMed  Google Scholar 

  56. Bande F et al (2017) Global distributions and strain diversity of avian infectious bronchitis virus: a review. Anim Health Res Rev 18(1):70–83

    Article  PubMed  Google Scholar 

  57. Lai MM, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spaan W, Cavanagh D, Horzinek MC (1988) Coronaviruses: structure and genome expression. J Gen Virol 69(Pt 12):2939–2952

    Article  CAS  PubMed  Google Scholar 

  59. Sutou S et al (1988) Cloning and sequencing of genes encoding structural proteins of avian infectious bronchitis virus. Virology 165(2):589–595

    Article  CAS  PubMed  Google Scholar 

  60. Cavanagh D (2007) Coronavirus avian infectious bronchitis virus. Vet Res 38(2):281–297

    Article  CAS  PubMed  Google Scholar 

  61. Koch G et al (1990) Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J Gen Virol 71(Pt 9):1929–1935

    Article  CAS  PubMed  Google Scholar 

  62. Niesters HG et al (1987) Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology 161(2):511–519

    Article  CAS  PubMed  Google Scholar 

  63. Cavanagh D, Davis PJ (1986) Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol 67(Pt 7):1443–1448

    Article  CAS  PubMed  Google Scholar 

  64. Cavanagh D et al (1986) Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res 4(2):133–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Valastro V et al (2016) S1 gene-based phylogeny of infectious bronchitis virus: an attempt to harmonize virus classification. Infect Genet Evol 39:349–364

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cavanagh D et al (2007) Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins. Vaccine 25(30):5558–5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Casais R et al (2005) Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol 79(13):8065–8078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Britton P et al (2012) Modification of the avian coronavirus infectious bronchitis virus for vaccine development. Bioengineered 3(2):114–119

    Article  Google Scholar 

  69. Casais R et al (2003) Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol 77(16):9084–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Armesto M et al (2011) A recombinant avian infectious bronchitis virus expressing a heterologous spike gene belonging to the 4/91 serotype. PLoS One 6(8):e24352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou YS et al (2013) Establishment of reverse genetics system for infectious bronchitis virus attenuated vaccine strain H120. Vet Microbiol 162(1):53–61

    Article  CAS  PubMed  Google Scholar 

  72. van Beurden SJ et al (2017) A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination. Virol J 14(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  73. Peeters BP et al (1999) Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73(6):5001–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peeters BP et al (2000) Genome replication of Newcastle disease virus: involvement of the rule-of-six. Arch Virol 145(9):1829–1845

    Article  CAS  PubMed  Google Scholar 

  75. Jiang Y et al (2020) Recombinant infectious bronchitis coronavirus H120 with the spike protein S1 gene of the nephropathogenic IBYZ strain remains attenuated but induces protective immunity. Vaccine 38(15):3157–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou S et al (2011) Expression of green fluorescent protein using an infectious cDNA clone of infectious bronchitis virus. Bing Du Xue Bao 27(1):11–17

    CAS  PubMed  Google Scholar 

  77. Huang Z et al (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77(16):8676–8685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fang S et al (2007) An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells. Virology 358(1):136–147

    Article  CAS  PubMed  Google Scholar 

  79. Youn S, Leibowitz JL, Collisson EW (2005) In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication. Virology 332(1):206–215

    Article  CAS  PubMed  Google Scholar 

  80. Cavanagh D (1983) Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. J Gen Virol 64(Pt 8):1787–1791

    Article  CAS  PubMed  Google Scholar 

  81. Alexander DJ (2000) Newcastle disease and other avian paramyxoviruses. Rev Sci Tech 19(2):443–462

    Article  CAS  PubMed  Google Scholar 

  82. Subbarao K et al (2003) Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology 305(1):192–200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nath, B., Morla, S., Kumar, S. (2022). Reverse Genetics and Its Usage in the Development of Vaccine Against Poultry Diseases. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2411. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1888-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1888-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1887-5

  • Online ISBN: 978-1-0716-1888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation