Visualization of the Cartilage and Bone Elements in the Craniofacial Structures by Alcian Blue and Alizarin Red Staining

  • Protocol
  • First Online:
Craniofacial Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2403))

Abstract

Craniofacial morphogenesis is underpinned by orchestrated growth and form-sha** activity of skeletal and soft tissues in the head and face. Disruptions during development can lead to dysmorphology of the skull, jaw, and the pharyngeal structures. Developmental disorders can be investigated in animal models to elucidate the molecular and cellular consequences of the morphogenetic defects. A first step in determining the disruption in the development of the head and face is to analyze the phenotypic features of the skeletal tissues. Examination of the anatomy of bones and cartilage over time and space will identify structural defects of head structures and guide follow-up analysis of the molecular and cellular attributes associated with the defects. Here we describe a protocol to simultaneously visualize the cartilage and bone elements by Alcian blue and Alizarin red staining, respectively, of wholemount specimens in mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacherjee V, Mukhopadhyay P, Singh S, Johnson C, Philipose JT, Warner CP, Greene RM, Pisano MM (2007) Neural crest and mesoderm lineage-dependent gene expression in orofacial development. Differentiation 75(5):463–477. https://doi.org/10.1111/j.1432-0436.2006.00145.x

    Article  CAS  PubMed  Google Scholar 

  2. Bildsoe H, Loebel DA, Jones VJ, Hor AC, Braithwaite AW, Chen YT, Behringer RR, Tam PP (2013) The mesenchymal architecture of the cranial mesoderm of mouse embryos is disrupted by the loss of Twist1 function. Dev Biol 374(2):295–307. https://doi.org/10.1016/j.ydbio.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Grenier J, Teillet MA, Grifone R, Kelly RG, Duprez D (2009) Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS One 4(2):e4381. https://doi.org/10.1371/journal.pone.0004381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCarthy N, Liu JS, Richarte AM, Eskiocak B, Lovely CB, Tallquist MD, Eberhart JK (2016) Pdgfra and Pdgfrb genetically interact during craniofacial development. Dev Dyn 245(6):641–652. https://doi.org/10.1002/dvdy.24403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Twigg SR, Healy C, Babbs C, Sharpe JA, Wood WG, Sharpe PT, Morriss-Kay GM, Wilkie AO (2009) Skeletal analysis of the Fgfr3(P244R) mouse, a genetic model for the Muenke craniosynostosis syndrome. Dev Dyn 238(2):331–342. https://doi.org/10.1002/dvdy.21790

    Article  CAS  PubMed  Google Scholar 

  6. Carver EA, Oram KF, Gridley T (2002) Craniosynostosis in Twist heterozygous mice: a model for Saethre-Chotzen syndrome. Anat Rec 268(2):90–92. https://doi.org/10.1002/ar.10124

    Article  PubMed  Google Scholar 

  7. Liu J, Nam HK, Wang E, Hatch NE (2013) Further analysis of the Crouzon mouse: effects of the FGFR2(C342Y) mutation are cranial bone-dependent. Calcif Tissue Int 92(5):451–466. https://doi.org/10.1007/s00223-013-9701-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan AP, Mankad K (2018) Apert syndrome: magnetic resonance imaging (MRI) of associated intracranial anomalies. Childs Nerv Syst 34(2):205–216. https://doi.org/10.1007/s00381-017-3670-0

    Article  PubMed  Google Scholar 

  9. Wang JC, Nagy L, Demke JC (2016) Syndromic craniosynostosis. Facial Plast Surg Clin North Am 24(4):531–543. https://doi.org/10.1016/j.fsc.2016.06.008

    Article  PubMed  Google Scholar 

  10. Yang F, Wang Y, Zhang Z, Hsu B, Jabs EW, Elisseeff JH (2008) The study of abnormal bone development in the Apert syndrome Fgfr2+/S252W mouse using a 3D hydrogel culture model. Bone 43(1):55–63. https://doi.org/10.1016/j.bone.2008.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohnishi T, Murata T, Watanabe A, Hida A, Ohba H, Iwayama Y, Mishima K, Gondo Y, Yoshikawa T (2014) Defective craniofacial development and brain function in a mouse model for depletion of intracellular inositol synthesis. J Biol Chem 289(15):10785–10796. https://doi.org/10.1074/jbc.M113.536706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mork L, Crump G (2015) Zebrafish craniofacial development: a window into early patterning. Curr Top Dev Biol 115:235–269. https://doi.org/10.1016/bs.ctdb.2015.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith F, Hu D, Young NM, Lainoff AJ, Jamniczky HA, Maltepe E, Hallgrimsson B, Marcucio RS (2013) The effect of hypoxia on facial shape variation and disease phenotypes in chicken embryos. Dis Model Mech 6(4):915–924. https://doi.org/10.1242/dmm.011064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s theory and practice of histological techniques, 8th edn. Elsevier

    Google Scholar 

  15. Puchtler H, Meloan SN, Terry MS (1969) On the history and mechanism of Alizarin and Alizarin red S stains for calcium. J Histochem Cytochem 17(2):110–124. https://doi.org/10.1177/17.2.110

    Article  CAS  PubMed  Google Scholar 

  16. Kiecker C (2016) The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 415(2):314–325. https://doi.org/10.1016/j.ydbio.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  17. Bildsoe H, Loebel DA, Jones VJ, Chen YT, Behringer RR, Tam PP (2009) Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo. Dev Biol 331(2):176–188. https://doi.org/10.1016/j.ydbio.2009.04.034

    Article  CAS  PubMed  Google Scholar 

  18. Mead TJ (2043) Alizarin red and Alcian blue preparations to visualize the skeleton. Methods Mol Biol 2020:207–212. https://doi.org/10.1007/978-1-4939-9698-8_17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua B. Studdert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Studdert, J.B., Bildsoe, H., Masamsetti, V.P., Tam, P.P.L. (2022). Visualization of the Cartilage and Bone Elements in the Craniofacial Structures by Alcian Blue and Alizarin Red Staining. In: Dworkin, S. (eds) Craniofacial Development. Methods in Molecular Biology, vol 2403. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1847-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1847-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1846-2

  • Online ISBN: 978-1-0716-1847-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation