Influence of Sex on the Effects of Nicotine and Other Drugs of Abuse on Intracranial Self-Stimulation

  • Protocol
  • First Online:
Methods for Preclinical Research in Addiction

Part of the book series: Neuromethods ((NM,volume 174))

  • 475 Accesses

Abstract

Drug abuse is one of the leading causes of loss of productivity, disease, and early death in the world. People typically start experimenting with drugs of abuse during adolescence, and about 20% of people who use drugs develop a substance abuse disorder. In general, drug use is more common in men than in women. However, when women use drugs, they are just as likely as men to develop a substance use disorder. Drugs of abuse induce euphoria, and the rewarding properties of drugs play an essential role in the early stages of drug use. After the development of dependence, cessation of drug use leads to somatic and affective withdrawal signs, which contributes to the maintenance of drug use. The intracranial self-stimulation (ICSS) method can be used to measure the acute rewarding properties of drugs and the dysphoria associated with drug withdrawal. One of the main advantages of the ICSS method is that it provides a quantitative measure of the rewarding aspects of drug use and the aversive aspects of withdrawal. The ICSS method can be used to identify sex differences in the rewarding and aversive aspects of drug use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. UNODC (2018) World drug report 2018. United Nations Publication, Sales No. E.18.XI.9

    Google Scholar 

  2. Mounts NS, Steinberg L (1995) An ecological analysis of peer influence on adolescent grade point average and drug use. Dev Psychol 31(6):915

    Google Scholar 

  3. Abelson J, Treloar C, Crawford J, Kippax S, Van Beek I, Howard J (2006) Some characteristics of early-onset injection drug users prior to and at the time of their first injection. Addiction 101(4):548–555

    PubMed  Google Scholar 

  4. Ritchie M, Roser M (2019) Drug use. OurWorldInData.org

    Google Scholar 

  5. Smart RG, Ogborne AC (2000) Drug use and drinking among students in 36 countries. Addict Behav 25(3):455–460

    CAS  PubMed  Google Scholar 

  6. Becker JB, Hu M (2008) Sex differences in drug abuse. Front Neuroendocrinol 29(1):36–47

    CAS  PubMed  Google Scholar 

  7. Becker JB, McClellan ML, Reed BG (2017) Sex differences, gender and addiction. J Neurosci Res 95(1–2):136–147

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gowing LR, Ali RL, Allsop S, Marsden J, Turf EE, West R, Witton J (2015) Global statistics on addictive behaviours: 2014 status report. Addiction 110(6):904–919

    PubMed  Google Scholar 

  9. Sieminska A, Jassem E (2014) The many faces of tobacco use among women. Med Sci Monit 20:153

    PubMed  PubMed Central  Google Scholar 

  10. Reitsma MB, Fullman N, Ng M, Salama JS, Abajobir A, Abate KH, Abbafati C, Abera SF, Abraham B, Abyu GY (2017) Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet 389(10082):1885–1906

    Google Scholar 

  11. Thalheimer W, Cook S (2002) How to calculate effect sizes from published research: a simplified methodology. Work-Learning Research, p 1

    Google Scholar 

  12. WHO (2015) WHO report on the global tobacco epidemic, 2015: raising taxes on tobacco. WHO, Geneva

    Google Scholar 

  13. Gentzke AS, Creamer M, Cullen KA, Ambrose BK, Willis G, Jamal A, King BA (2019) Vital signs: tobacco product use among middle and high school students—United States, 2011–2018. Morb Mortal Wkly Rep 68(6):157

    Google Scholar 

  14. Cullen KA, Gentzke AS, Sawdey MD, Chang JT, Anic GM, Wang TW, Creamer MR, Jamal A, Ambrose BK, King BA (2019) e-Cigarette use among youth in the United States, 2019. JAMA 322:2095. https://doi.org/10.1001/jama.2019.18387

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leventhal AM, Strong DR, Kirkpatrick MG, Unger JB, Sussman S, Riggs NR, Stone MD, Khoddam R, Samet JM, Audrain-McGovern J (2015) Association of electronic cigarette use with initiation of combustible tobacco product smoking in early adolescence. JAMA 314(7):700–707

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamilton HA, Ferrence R, Boak A, Schwartz R, Mann RE, O’Connor S, Adlaf EM (2014) Ever use of nicotine and nonnicotine electronic cigarettes among high school students in Ontario, Canada. Nicotine Tob Res 17(10):1212–1218

    PubMed  Google Scholar 

  17. Morean ME, Krishnan-Sarin S, O’Malley SS (2018) Assessing nicotine dependence in adolescent e-cigarette users: the 4-item Patient-Reported Outcomes Measurement Information System (PROMIS) Nicotine Dependence Item Bank for electronic cigarettes. Drug Alcohol Depend 188:60–63

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427

    CAS  PubMed  Google Scholar 

  19. Olds J (1958) Self-stimulation of the brain: its use to study local effects of hunger, sex, and drugs. Science 127(3294):315–324

    CAS  PubMed  Google Scholar 

  20. Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35(1):68–77

    CAS  PubMed  Google Scholar 

  21. Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2(11):2987–2995. https://doi.org/10.1038/nprot.2007.441

    Article  CAS  PubMed  Google Scholar 

  22. Marcus R, Kornetsky C (1974) Negative and positive intracranial reinforcement tresholds: effects of morphine. Psychopharmacologia 38(1):1–13

    CAS  Google Scholar 

  23. Stein L, Ray OS (1959) Self-regulation of brain-stimulating current intensity in the rat. Science 130(3375):570–572

    CAS  PubMed  Google Scholar 

  24. Bruijnzeel AW, Lewis B, Bajpai LK, Morey TE, Dennis DM, Gold M (2006) Severe deficit in brain reward function associated with fentanyl withdrawal in rats. Biol Psychiatry 59(5):477–480

    CAS  PubMed  Google Scholar 

  25. Igari M, Alexander JC, Ji Y, Qi X, Papke RL, Bruijnzeel AW (2013) Varenicline and cytisine diminish the dysphoric-like state associated with spontaneous nicotine withdrawal in rats. Neuropsychopharmacology 39:455–465

    PubMed  PubMed Central  Google Scholar 

  26. Bruijnzeel AW (2012) Tobacco addiction and the dysregulation of brain stress systems. Neurosci Biobehav Rev 36:1418–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruijnzeel AW, Gold MS (2005) The role of corticotropin-releasing factor-like peptides in cannabis, nicotine, and alcohol dependence. Brain Res Rev 49(3):505–528

    CAS  PubMed  Google Scholar 

  28. Foll BL, Goldberg SR (2009) Effects of nicotine in experimental animals and humans: an update on addictive properties. In: Henningfield JE, London ED, Pogun S (eds) Nicotine psychopharmacology. Springer, Berlin, pp 335–367. https://doi.org/10.1007/978-3-540-69248-5_12

    Chapter  Google Scholar 

  29. Heishman SJ, Kleykamp BA, Singleton EG (2010) Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210(4):453–469

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xue S, Behnood-Rod A, Wilson R, Wilks I, Tan S, Bruijnzeel AW (2018) Rewarding effects of nicotine in adolescent and adult male and female rats as measured using intracranial self-stimulation. Nicotine Tob Res 22:172–179. https://doi.org/10.1093/ntr/nty249

    Article  PubMed Central  Google Scholar 

  32. Lee AM, Calarco CA, McKee SA, Mineur YS, Picciotto MR (2019) Variability in nicotine conditioned place preference and stress-induced reinstatement in mice: effects of sex, initial chamber preference, and guanfacine. Genes Brain Behav 19:e12601

    PubMed  PubMed Central  Google Scholar 

  33. Lenoir M, Starosciak AK, Ledon J, Booth C, Zakharova E, Wade D, Vignoli B, Izenwasser S (2015) Sex differences in conditioned nicotine reward are age-specific. Pharmacol Biochem Behav 132:56–62. https://doi.org/10.1016/j.pbb.2015.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stratmann JA, Craft RM (1997) Intracranial self-stimulation in female and male rats: no sex differences using a rate-independent procedure. Drug Alcohol Depend 46(1):31–40

    CAS  PubMed  Google Scholar 

  35. Legakis LP, Negus SS (2018) Repeated morphine produces sensitization to reward and tolerance to antiallodynia in male and female rats with chemotherapy-induced neuropathy. J Pharmacol Exp Ther 365(1):9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lazenka M, Suyama J, Bauer C, Banks M, Negus S (2017) Sex differences in abuse-related neurochemical and behavioral effects of 3, 4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol Biochem Behav 152:52–60

    CAS  PubMed  Google Scholar 

  37. Bain GT, Kornetsky C (1989) Ethanol oral self-administration and rewarding brain stimulation. Alcohol 6(6):499–503

    CAS  PubMed  Google Scholar 

  38. Moolten M, Kornetsky C (1990) Oral self-administration of ethanol and not experimenter-administered ethanol facilitates rewarding electrical brain stimulation. Alcohol 7(3):221–225

    CAS  PubMed  Google Scholar 

  39. Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW (1991) Symptoms of tobacco withdrawal. A replication and extension. Arch Gen Psychiatry 48(1):52–59

    CAS  PubMed  Google Scholar 

  40. Hughes JR, Hatsukami D (1986) Signs and symptoms of tobacco withdrawal. Arch Gen Psychiatry 43(3):289–294

    CAS  PubMed  Google Scholar 

  41. Wesnes K, Warburton DM (1983) Smoking, nicotine and human performance. Pharmacol Ther 21(2):189–208

    CAS  PubMed  Google Scholar 

  42. Ep**-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393(6680):76–79

    CAS  PubMed  Google Scholar 

  43. Hildebrand B, Nomikos G, Bondjers C, Nisell M, Svensson T (1997) Behavioral manifestations of the nicotine abstinence syndrome in the rat: peripheral versus central mechanisms. Psychopharmacology 129(4):348–356

    CAS  PubMed  Google Scholar 

  44. Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA, Cunningham JS, Wilson OB (1992) Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43(3):779–784

    CAS  PubMed  Google Scholar 

  45. Malin DH, Lake JR, Carter VA, Cunningham JS, Hebert KM, Conrad DL, Wilson OB (1994) The nicotinic antagonist mecamylamine precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 115(1–2):180–184

    CAS  PubMed  Google Scholar 

  46. O’Dell LE, Bruijnzeel AW, Smith RT, Parsons LH, Merves ML, Goldberger BA, Richardson HN, Koob GF, Markou A (2006) Diminished nicotine withdrawal in adolescent rats: implications for vulnerability to addiction. Psychopharmacology 186(4):612–619

    PubMed  Google Scholar 

  47. Bruijnzeel AW, Markou A (2004) Adaptations in cholinergic transmission in the ventral tegmental area associated with the affective signs of nicotine withdrawal in rats. Neuropharmacology 47(4):572–579

    CAS  PubMed  Google Scholar 

  48. Bespalov A, Lebedev A, Panchenko G, Zvartau E (1999) Effects of abused drugs on thresholds and breaking points of intracranial self-stimulation in rats. Eur Neuropsychopharmacol 9(5):377–383

    CAS  PubMed  Google Scholar 

  49. Nakahara D (2004) Influence of nicotine on brain reward systems: study of intracranial self-stimulation. Ann N Y Acad Sci 1025(1):489–490

    CAS  PubMed  Google Scholar 

  50. Paterson NE (2009) The neuropharmacological substrates of nicotine reward: reinforcing versus reinforcement-enhancing effects of nicotine. Behav Pharmacol 20(3):211–225

    CAS  PubMed  Google Scholar 

  51. Leith NJ, Barrett RJ (1976) Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia 46(1):19–25

    CAS  PubMed  Google Scholar 

  52. Lin D, Koob GF, Markou A (1999) Differential effects of withdrawal from chronic amphetamine or fluoxetine administration on brain stimulation reward in the rat--interactions between the two drugs. Psychopharmacology 145(3):283–294

    CAS  PubMed  Google Scholar 

  53. Markou A, Koob GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4(1):17–26

    CAS  PubMed  Google Scholar 

  54. Schulteis G, Markou A, Gold LH, Stinus L, Koob GF (1994) Relative sensitivity to naloxone of multiple indices of opiate withdrawal: a quantitative dose-response analysis. J Pharmacol Exp Ther 271(3):1391–1398

    CAS  PubMed  Google Scholar 

  55. Schulteis G, Markou A, Cole M, Koob GF (1995) Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci U S A 92(13):5880–5884

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tan S, Xue S, Behnood-Rod A, Chellian R, Wilson R, Knight P, Panunzio S, Lyons H, Febo M, Bruijnzeel AW (2019) Sex differences in the reward deficit and somatic signs associated with precipitated nicotine withdrawal in rats. Neuropharmacology 160:107756

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rylkova D, Shah HP, Small E, Bruijnzeel AW (2009) Deficit in brain reward function and acute and protracted anxiety-like behavior after discontinuation of a chronic alcohol liquid diet in rats. Psychopharmacology 203(3):629–640

    CAS  PubMed  Google Scholar 

  58. Henricks AM, Berger AL, Lugo JM, Baxter-Potter LN, Bieniasz KV, Petrie G, Sticht MA, Hill MN, McLaughlin RJ (2017) Sex-and hormone-dependent alterations in alcohol withdrawal-induced anxiety and corticolimbic endocannabinoid signaling. Neuropharmacology 124:121–133

    CAS  PubMed  Google Scholar 

  59. Varlinskaya EI, Spear LP (2004) Acute ethanol withdrawal (hangover) and social behavior in adolescent and adult male and female Sprague-Dawley rats. Alcohol Clin Exp Res 28(1):40–50

    PubMed  Google Scholar 

  60. Alele PE, Devaud LL (2007) Sex differences in steroid modulation of ethanol withdrawal in male and female rats. J Pharmacol Exp Ther 320(1):427–436

    CAS  PubMed  Google Scholar 

  61. Liu J, Pan H, Gold MS, Derendorf H, Bruijnzeel AW (2008) Effects of fentanyl dose and exposure duration on the affective and somatic signs of fentanyl withdrawal in rats. Neuropharmacology 55(5):812–818

    CAS  PubMed  Google Scholar 

  62. Cicero TJ, Nock B, Meyer ER (2002) Gender-linked differences in the expression of physical dependence in the rat. Pharmacol Biochem Behav 72(3):691–697

    CAS  PubMed  Google Scholar 

  63. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, vol 4. Academic Press, San Diego, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriaan W. Bruijnzeel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chellian, R., Wilson, R., Behnood-Rod, A., Bruijnzeel, A.W. (2022). Influence of Sex on the Effects of Nicotine and Other Drugs of Abuse on Intracranial Self-Stimulation. In: Aguilar, M.A. (eds) Methods for Preclinical Research in Addiction. Neuromethods, vol 174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1748-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1748-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1747-2

  • Online ISBN: 978-1-0716-1748-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation