Microfluidic Glass Capillary Devices: An Innovative Tool to Encapsulate Lactiplantibacillus plantarum

  • Chapter
  • First Online:
Basic Protocols in Encapsulation of Food Ingredients

Abstract

In this chapter, a detailed preparation of W/O emulsions using microfluidic devices is presented. Soybean oil is proposed as continuous phase, and two hydrophilic polymers, sodium caseinate and alginate, are proposed as dispersed phases. This approach enables the controlled encapsulation of different cells and/or bioactive compounds. The encapsulation of the probiotic strain Lactiplantibacillus plantarum CIDCA 83114 is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Francesko A, Cardoso VF, Lanceros-Mendez S (2019) Lab-on-a-chip technology and microfluidics. In: Santos HA, Liu D, Zhag H (eds) Microfluidics for pharmaceutical applications from nano/micro systems fabrication to controlled drug delivery. Elsevier, Amsterdam, pp 3–36

    Google Scholar 

  2. Utada AS, Lorenceau E, Link DR et al (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541. https://doi.org/10.1126/science.1109164

    Article  CAS  PubMed  Google Scholar 

  3. Chu LY, Utada AS, Shah RK et al (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 46:8970–8974. https://doi.org/10.1002/anie.200701358

    Article  CAS  Google Scholar 

  4. Vinner GK, Vladisavljević GT, Clokie MR et al (2017) Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release. PLoS One 12:e0186239. https://doi.org/10.1371/journal.pone.0186239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bazban-Shotorbani S, Dashtimoghadam E, Karkhaneh A et al (2016) Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery. Langmuir 32:4996–5003. https://doi.org/10.1021/acs.langmuir.5b04645

    Article  CAS  PubMed  Google Scholar 

  6. Niu X, de Mello AJ (2012) Building droplet-based microfluidic systems for biological analysis. Biochem Soc Trans 40:615–623. https://doi.org/10.1042/BST20120005

    Article  CAS  PubMed  Google Scholar 

  7. Garrote GL, Abraham AG, De Antoni GL (2001) Chemical and microbiological characterisation of kefir grains. J Dairy Res 68:639–652. https://doi.org/10.1017/S0022029901005210

    Article  CAS  PubMed  Google Scholar 

  8. de Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  9. Zinchenko A, Devenish SRA, Kintses B et al (2014) One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 86:2526–2533. https://doi.org/10.1021/AC403585P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin-Dejardin F, Ebel B, Lemetais G et al (2013) A way to follow the viability of encapsulated Bifidobacterium bifidum subjected to a freeze-drying process in order to target the colon: interest of flow cytometry. Eur J Pharm Sci 49:166–174. https://doi.org/10.1016/j.ejps.2013.02.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Argentinean Agency for the Scientific and Technological Promotion (ANPCyT) [Projects PICT(2017)/1344 and PICT start-up (2016)/4808. G.Q. is fellow from CONICET. E.G. and A.G.-Z. are members of the research career CONICET.

Competing Interests: The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gómez-Zavaglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quintana, G., Gerbino, E., Gómez-Zavaglia, A. (2021). Microfluidic Glass Capillary Devices: An Innovative Tool to Encapsulate Lactiplantibacillus plantarum. In: Gomez-Zavaglia, A. (eds) Basic Protocols in Encapsulation of Food Ingredients. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1649-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1649-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1648-2

  • Online ISBN: 978-1-0716-1649-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation