Native Mass Spectrometry of Iron-Sulfur Proteins

  • Protocol
  • First Online:
Fe-S Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2353))

Abstract

Iron-sulfur clusters constitute a large and widely distributed group of protein cofactors that play key roles in a wide range of metabolic processes. The inherent reactivity of iron-sulfur clusters toward small molecules, for example, O2, NO, or free Fe, makes them ideal for sensing changes in the cellular environment. Nondenaturing, or native, MS is unique in its ability to preserve the noncovalent interactions of many (if not all) species, including stable intermediates, while providing accurate mass measurements in both thermodynamic and kinetic experimental regimes. Here, we provide practical guidance for the study of iron-sulfur proteins by native MS, illustrated by examples where it has been used to unambiguously determine the type of cluster coordinated to the protein framework. We also describe the use of time-resolved native MS to follow the kinetics of cluster conversion, allowing the elucidation of the precise series of molecular events for all species involved. Finally, we provide advice on a unique approach to a typical thermodynamic titration, uncovering early, quasi-stable, intermediates in the reaction of a cluster with nitric oxide, resulting in cluster nitrosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beinert H, Meyer J, Lill R (2004) Iron–sulfur proteins. In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry. Elsevier, New York, pp 482–489

    Chapter  Google Scholar 

  2. Bian S, Cowan JA (1999) Protein-bound iron–sulfur centers. Form, function, and assembly. Coord Chem Rev 190–192:1049–1066

    Article  Google Scholar 

  3. Crack JC, Le Brun NE (2018) Redox-sensing iron-sulfur cluster regulators. Antiox Red Signal 29:1809–1829

    Article  CAS  Google Scholar 

  4. Balk J, Pilon M (2011) Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci 16:218–226

    Article  CAS  PubMed  Google Scholar 

  5. Jeoung JH, Martins BM, Dobbek H (2020) Double-cubane [8Fe-9S] clusters: a novel nitrogenase-related cofactor in biology. Chembiochem 21(12):1710–1716. https://doi.org/10.1002/cbic.202000016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  7. Beinert H (1983) Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem 131:373–378

    Article  CAS  PubMed  Google Scholar 

  8. Moulis JM, Scherrer N, Gagnon J, Forest E, Petillot Y, Garcia D (1993) Primary structure of Chromatium tepidum high-potential iron-sulfur protein in relation to thermal denaturation. Arch Biochem Biophys 305:186–192

    Article  CAS  PubMed  Google Scholar 

  9. Petillot Y, Forest E, Meyer J, Moulis JM (1995) Observation of holoprotein molecular ions of several ferredoxins by electrospray-ionization-mass spectrometry. Anal Biochem 228:56–63

    Article  CAS  PubMed  Google Scholar 

  10. Johnson KA, Verhagen MF, Brereton PS, Adams MW, Amster IJ (2000) Probing the stoichiometry and oxidation states of metal centers in iron-sulfur proteins using electrospray FTICR mass spectrometry. Anal Chem 72:1410–1418

    Article  CAS  PubMed  Google Scholar 

  11. Johnson KA, Amster IJ (2001) First observation by mass spectrometry of a 3+ oxidation state for a [4Fe-4S] metalloprotein: an ESI-FTICR mass spectrometry study of the high potential iron-sulfur protein from Chromatium vinosum. J Am Soc Mass Spectrom 12:819–825

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez H, Hewitson KS, Roach P, Shaw NM, Baldwin JE, Robinson CV (2001) Observation of the iron-sulfur cluster in Escherichia coli biotin synthase by nanoflow electrospray mass spectrometry. Anal Chem 73:4154–4161

    Article  CAS  PubMed  Google Scholar 

  13. Heck AJ (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5:927–933

    Article  CAS  PubMed  Google Scholar 

  14. Leney AC, Heck AJ (2017) Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom 28:5–13

    Article  CAS  PubMed  Google Scholar 

  15. Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8:639–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morgner N, Robinson CV (2012) Linking structural change with functional regulation-insights from mass spectrometry. Curr Opin Struct Biol 22:44–51

    Article  CAS  PubMed  Google Scholar 

  17. Belov ME, Damoc E, Denisov E, Compton PD, Horning S, Makarov AA, Kelleher NL (2013) From protein complexes to subunit backbone fragments: a multi-stage approach to native mass spectrometry. Anal Chem 85:11163–11173

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt C, Robinson CV (2014) Dynamic protein ligand interactions—insights from MS. FEBS J 281:1950–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mehmood S, Marcoux J, Gault J, Quigley A, Michaelis S, Young SG, Carpenter EP, Robinson CV (2016) Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat Chem 8:1152–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sahin C, Reid DJ, Marty MT, Landreh M (2020) Scratching the surface: native mass spectrometry of peripheral membrane protein complexes. Biochem Soc Trans 48(2):547–558. https://doi.org/10.1042/BST20190787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ventouri IK, Malheiro DBA, Voeten RLC, Kok S, Honing M, Somsen GW, Haselberg R (2020) Probing protein denaturation during size-exclusion chromatography using native mass spectrometry. Anal Chem 92(6):4292–4300. https://doi.org/10.1021/acs.analchem.9b04961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wittig S, Songailiene I, Schmidt C (2020) Formation and stoichiometry of CRISPR-cascade complexes with varying spacer lengths revealed by native mass spectrometry. J Am Soc Mass Spectrom 31:538–546

    Article  CAS  PubMed  Google Scholar 

  23. Wolff P, Ennifar E (2020) Native electrospray ionization mass spectrometry of RNA-ligand complexes. Methods Mol Biol 2113:111–118

    Article  CAS  PubMed  Google Scholar 

  24. Saikusa K, Kato D, Nagadoi A, Kurumizaka H, Akashi S (2020) Native mass spectrometry of protein and DNA complexes prepared in nonvolatile buffers. J Am Soc Mass Spectrom 31:711–718

    Article  CAS  PubMed  Google Scholar 

  25. Osterlund N, Moons R, Ilag LL, Sobott F, Graslund A (2019) Native ion mobility-mass spectrometry reveals the formation of beta-barrel shaped amyloid-beta hexamers in a membrane-mimicking environment. J Am Chem Soc 141:10440–10450

    Article  PubMed  CAS  Google Scholar 

  26. Adinolfi S, Puglisi R, Crack JC, Iannuzzi C, Dal Piaz F, Konarev PV, Svergun DI, Martin S, Le Brun NE, Pastore A (2017) The molecular bases of the dual regulation of bacterial iron sulfur cluster biogenesis by CyaY and IscX. Front Mol Biosci 4:97

    Article  PubMed  CAS  Google Scholar 

  27. Ross J, Lambert T, Piergentili C, He D, Waldron KJ, Mackay CL, Marles-Wright J, Clarke DJ (2020) Mass spectrometry reveals the assembly pathway of encapsulated ferritins and highlights a dynamic ferroxidase interface. Chem Commun 56:3417–3342. https://doi.org/10.1039/c9cc08130e

    Article  CAS  Google Scholar 

  28. Scheller JS, Irvine GW, Stillman MJ (2018) Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data. Dalton Trans 47:3613–3637. https://doi.org/10.1039/c7dt03319b

    Article  CAS  PubMed  Google Scholar 

  29. Ott DB, Hartwig A, Stillman MJ (2019) Competition between Al3+ and Fe3+ binding to human transferrin and toxicological implications: structural investigations using ultra-high resolution ESI MS and CD spectroscopy. Metallomics 11:968–981

    Article  CAS  PubMed  Google Scholar 

  30. Lermyte F, Everett J, Lam YPY, Wootton CA, Brooks J, Barrow MP, Telling ND, Sadler PJ, O'Connor PB, Collingwood JF (2019) Metal ion binding to the amyloid beta monomer studied by native top-down FTICR mass spectrometry. J Am Soc Mass Spectrom 30:2123–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Puglisi R, Boeri Erba E, Pastore A (2020) A guide to native mass spectrometry to determine complex interactomes of molecular machines. FEBS J 287:2428–2439. https://doi.org/10.1111/febs.15281

    Article  CAS  PubMed  Google Scholar 

  32. Lin CW, McCabe JW, Russell DH, Barondeau DP (2020) Molecular mechanism of ISC iron-sulfur cluster biogenesis revealed by high-resolution native mass spectrometry. J Am Chem Soc 142(13):6018–6029. https://doi.org/10.1021/jacs.9b11454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia M, Sen S, Wachnowsky C, Fidai I, Cowan JA, Wysocki VH (2020) Characterization of [2Fe-2S]-cluster-bridged protein complexes and reaction intermediates by use of native mass spectrometric methods. Angew Chem Int Ed Engl 59:6724–6728. https://doi.org/10.1002/anie.201915615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gervason S, Larkem D, Mansour AB, Botzanowski T, Muller CS, Pecqueur L, Le Pavec G, Delaunay-Moisan A, Brun O, Agramunt J, Grandas A, Fontecave M, Schunemann V, Cianferani S, Sizun C, Toledano MB, D'Autreaux B (2019) Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat Commun 10:3566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Woodall DW, Brown CJ, Raab SA, El-Baba TJ, Laganowsky A, Russell DH, Clemmer DE (2020) Melting of hemoglobin in native solutions as measured by IMS-MS. Anal Chem 92:3440–3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kay KL, Hamilton CJ, Le Brun NE (2019) Mass spectrometric studies of cu(I)-binding to the N-terminal domains of B. subtilis CopA and influence of bacillithiol. J Inorg Biochem 190:24–30

    Article  CAS  PubMed  Google Scholar 

  37. Zhou L, Kay KL, Hecht O, Moore GR, Le Brun NE (2018) The N-terminal domains of Bacillus subtilis CopA do not form a stable complex in the absence of their inter-domain linker. Biochim Biophys Acta 1866:275–282

    Article  CAS  Google Scholar 

  38. Bennett SP, Soriano-Laguna MJ, Bradley JM, Svistunenko DA, Richardson DJ, Gates AJ, Le Brun NE (2019) NosL is a dedicated copper chaperone for assembly of the CuZ center of nitrous oxide reductase. Chem Sci 10:4985–4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandler SA, Benesch JL (2018) Mass spectrometry beyond the native state. Curr Opin Chem Biol 42:130–137

    Article  CAS  PubMed  Google Scholar 

  40. Pellicer Martinez MT, Crack JC, Stewart MY, Bradley JM, Svistunenko DA, Johnston AW, Cheesman MR, Todd JD, Le Brun NE (2019) Mechanisms of iron- and O2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA. Elife 8:e47804. https://doi.org/10.7554/eLife.47804

    Article  PubMed  PubMed Central  Google Scholar 

  41. Crack JC, Hamilton CJ, Le Brun NE (2018) Mass spectrometric detection of iron nitrosyls, sulfide oxidation and mycothiolation during nitrosylation of the NO sensor [4Fe-4S] NsrR. Chem Commun 54:5992–5995

    Article  CAS  Google Scholar 

  42. Crack JC, Thomson AJ, Le Brun NE (2017) Mass spectrometric identification of intermediates in the O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion in FNR. Proc Natl Acad Sci U S A 114:E3215–E3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sutton VR, Mettert EL, Beinert H, Kiley PJ (2004) Kinetic analysis of the oxidative conversion of the [4Fe-4S]2+ cluster of FNR to a [2Fe-2S]2+ cluster. J Bacteriol 186:8018–8025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crack JC, Gaskell AA, Green J, Cheesman MR, Le Brun NE, Thomson AJ (2008) Influence of the environment on the [4Fe-4S]2+ to [2Fe-2S]2+ cluster switch in the transcriptional regulator FNR. J Am Chem Soc 130:1749–1758

    Article  CAS  PubMed  Google Scholar 

  45. Crack JC, Green J, Cheesman MR, Le Brun NE, Thomson AJ (2007) Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proc Natl Acad Sci U S A 104:2092–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crack Jason C, Jervis Adrian J, Gaskell Alisa A, White Gaye F, Green J, Thomson Andrew J, Le Brun NE (2008) Signal perception by FNR: the role of the iron–sulfur cluster1. Biochem Soc Trans 36:1144

    Article  CAS  PubMed  Google Scholar 

  47. Moore LJ, Mettert EL, Kiley PJ (2006) Regulation of FNR dimerization by subunit charge repulsion. J Biol Chem 281:33268–33275

    Article  CAS  PubMed  Google Scholar 

  48. Lazazzera BA, Beinert H, Khoroshilova N, Kennedy MC, Kiley PJ (1996) DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem 271:2762–2768

    Article  CAS  PubMed  Google Scholar 

  49. Popescu CV, Bates DM, Beinert H, Munck E, Kiley PJ (1998) Mössbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli. Proc Natl Acad Sci U S A 95:13431–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khoroshilova N, Beinert H, Kiley PJ (1995) Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci U S A 92:2499–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khoroshilova N, Popescu C, Munck E, Beinert H, Kiley PJ (1997) Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci U S A 94:6087–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiley PJ, Beinert H (1999) Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev 22:341–352

    Article  Google Scholar 

  53. Jervis AJ, Crack JC, White G, Artymiuk PJ, Cheesman MR, Thomson AJ, Le Brun NE, Green J (2009) The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion. Proc Natl Acad Sci U S A 106:4659–4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang B, Crack JC, Subramanian S, Green J, Thomson AJ, Le Brun NE, Johnson MK (2012) Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein. Proc Natl Acad Sci U S A 109:15734–15739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crack JC, Stewart MYY, Le Brun NE (2019) Generation of 34S-substituted protein-bound [4Fe-4S] clusters using 34S-L-cysteine. Biol Methods Protoc 4:byp015

    Article  CAS  Google Scholar 

  56. Kondrat FD, Struwe WB, Benesch JL (2015) Native mass spectrometry: towards high-throughput structural proteomics. Methods Mol Biol 1261:349–371

    Article  CAS  PubMed  Google Scholar 

  57. Freibert SA, Weiler BD, Bill E, Pierik AJ, Muhlenhoff U, Lill R (2018) Biochemical reconstitution and spectroscopic analysis of iron-sulfur proteins. Methods Enzymol 599:197–226

    Article  CAS  PubMed  Google Scholar 

  58. Crack JC, Green J, Thomson AJ, Le Brun NE (2014) Techniques for the production, isolation, and analysis of iron-sulfur proteins. Methods Mol Biol 1122:33–48

    Article  CAS  PubMed  Google Scholar 

  59. Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci U S A 90:2754–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. König S, Fales HM (1999) Calibration of mass ranges up to m/z 10,000 in electrospray mass spectrometers. J Am Soc Mass Spect 10:273–276

    Article  Google Scholar 

  61. Jackson VA, Mehmood S, Chavent M, Roversi P, Carrasquero M, Del Toro D, Seyit-Bremer G, Ranaivoson FM, Comoletti D, Sansom MS, Robinson CV, Klein R, Seiradake E (2016) Super-complexes of adhesion GPCRs and neural guidance receptors. Nat Commun 7:11184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sweeney WV, Rabinowitz JC (1980) Proteins containing 4Fe-4S clusters: an overview. Annu Rev Biochem 49:139–161

    Article  CAS  PubMed  Google Scholar 

  63. Munnoch JT, Martinez MT, Svistunenko DA, Crack JC, Le Brun NE, Hutchings MI (2016) Characterization of a putative NsrR homologue in Streptomyces venezuelae reveals a new member of the Rrf2 superfamily. Sci Rep 6:31597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pellicer Martinez MT, Martinez AB, Crack JC, Holmes JD, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE (2017) Sensing iron availability via the fragile [4Fe-4S] cluster of the bacterial transcriptional repressor RirA. Chem Sci 8:8451–8463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Crack JC, Munnoch J, Dodd EL, Knowles F, Al Bassam MM, Kamali S, Holland AA, Cramer SP, Hamilton CJ, Johnson MK, Thomson AJ, Hutchings MI, Le Brun NE (2015) NsrR from Streptomyces coelicolor is a nitric oxide-sensing [4Fe-4S] cluster protein with a specialized regulatory function. J Biol Chem 290:12689–12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Susa AC, **a Z, Tang HYH, Tainer JA, Williams ER (2017) Charging of proteins in native mass spectrometry. J Am Soc Mass Spectrom 28:332–340

    Article  CAS  PubMed  Google Scholar 

  67. Konermann L, Metwally H, Duez Q, Peters I (2019) Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 144:6157–6171

    Article  CAS  PubMed  Google Scholar 

  68. Ferrige AG, Seddon MJ, Jarvis S, Skilling J, Aplin R (1991) Maximum entropy deconvolution in electrospray mass spectrometry. Rapid Commun Mass Spectrom 5:374–377

    Article  CAS  Google Scholar 

  69. Bern M, Caval T, Kil YJ, Tang W, Becker C, Carlson E, Kletter D, Sen KI, Galy N, Hagemans D, Franc V, Heck AJR (2018) Parsimonious charge deconvolution for native mass spectrometry. J Proteome Res 17:1216–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bich C, Baer S, Jecklin MC, Zenobi R (2010) Probing the hydrophobic effect of noncovalent complexes by mass spectrometry. J Am Soc Mass Spectrom 21:286–289

    Article  CAS  PubMed  Google Scholar 

  71. Volbeda A, Dodd EL, Darnault C, Crack JC, Renoux O, Hutchings MI, Le Brun NE, Fontecilla-Camps JC (2017) Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding. Nat Commun 8:15052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Child SA, Bradley JM, Pukala TL, Svistunenko DA, Le Brun NE, Bell SG (2018) Electron transfer ferredoxins with unusual cluster binding motifs support secondary metabolism in many bacteria. Chem Sci 9:7948–7957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Crack JC, Le Brun N (2019) Mass spectrometric identification of [4Fe-4S](NO)x intermediates of nitric oxide sensing by regulatory iron-sulfur cluster proteins. Chemistry 25:3675–3684

    Article  CAS  PubMed  Google Scholar 

  74. Kudhair BK, Hounslow AM, Rolfe MD, Crack JC, Hunt DM, Buxton RS, Smith LJ, Le Brun NE, Williamson MP, Green J (2017) Structure of a Wbl protein and implications for NO sensing by M. tuberculosis. Nat Commun 8:2280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237:260–273

    Article  CAS  PubMed  Google Scholar 

  76. Rose RJ, Damoc E, Denisov E, Makarov A, Heck AJ (2012) High-sensitivity orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9:1084–1086

    Article  CAS  PubMed  Google Scholar 

  77. Sobott F, Hernandez H, McCammon MG, Tito MA, Robinson CV (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74:1402–1407

    Article  CAS  PubMed  Google Scholar 

  78. Mendes MA, Chies JM, de Oliveira Dias AC, Filho SA, Palma MS (2003) The shielding effect of glycerol against protein ionization in electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:672–677

    Article  CAS  PubMed  Google Scholar 

  79. Weaver R, Riley RJ (2006) Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun Mass Spectrom 20:2559–2564

    Article  CAS  PubMed  Google Scholar 

  80. Hedges JB, Vahidi S, Yue X, Konermann L (2013) Effects of ammonium bicarbonate on the electrospray mass spectra of proteins: evidence for bubble-induced unfolding. Anal Chem 85:6469–6476

    Article  CAS  PubMed  Google Scholar 

  81. Honarvar E, Venter AR (2018) Comparing the effects of additives on protein analysis between desorption electrospray (DESI) and electrospray ionization (ESI). J Am Soc Mass Spectrom 29:2443–2455

    Article  CAS  PubMed  Google Scholar 

  82. Marty MT (2020) A universal score for deconvolution of intact protein and native electrospray mass spectra. Anal Chem 92:4395–4401

    Article  CAS  PubMed  Google Scholar 

  83. Reid DJ, Diesing JM, Miller MA, Perry SM, Wales JA, Montfort WR, Marty MT (2019) MetaUniDec: high-throughput deconvolution of native mass spectra. J Am Soc Mass Spectrom 30:118–127

    Article  CAS  PubMed  Google Scholar 

  84. Marty MT (2019) Eliminating artifacts in electrospray deconvolution with a SoftMax function. J Am Soc Mass Spectrom 30:2174–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cleary SP, Li H, Bagal D, Loo JA, Campuzano IDG, Prell JS (2018) Extracting charge and mass information from highly congested mass spectra using Fourier-domain harmonics. J Am Soc Mass Spectrom 29:2067–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu J, Trnka MJ, Roh SH, Robinson PJ, Shiau C, Fujimori DG, Chiu W, Burlingame AL, Guan S (2015) Improved peak detection and deconvolution of native electrospray mass spectra from large protein complexes. J Am Soc Mass Spectrom 26:2141–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Volbeda A, Pellicer Martinez MT, Crack JC, Amara P, Gigarel O, Munnoch JT, Hutchings MI, Darnault C, Le Brun NE, Fontecilla-Camps JC (2019) The crystal structure of the transcription regulator RsrR reveals a [2Fe-2S] cluster coordinated by Cys, Glu and His Residues. J Am Chem Soc 141(6):2367–2375. https://doi.org/10.1021/jacs.8b10823

    Article  CAS  PubMed  Google Scholar 

  88. Crack JC, Amara P, Volbeda A, Mouesca JM, Rohac R, Pellicer Martinez MT, Huang CY, Gigarel O, Rinaldi C, Le Brun NE, Fontecilla-Camps JC (2020) Electron and proton transfers modulate NA binding by the transcription regulator RsrR. J Am Chem Soc 142:5104–5116

    Article  CAS  PubMed  Google Scholar 

  89. Johnston AW, Todd JD, Curson AR, Lei S, Nikolaidou-Katsaridou N, Gelfand MS, Rodionov DA (2007) Living without fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 20:501–511

    Article  CAS  PubMed  Google Scholar 

  90. Behringer M, Plotzky L, Baabe D, Zaretzke MK, Schweyen P, Broring M, Jahn D, Hartig E (2020) RirA of Dinoroseobacter shibae senses iron via a [3Fe-4S]1+ cluster co-ordinated by three cysteine residues. Biochem J 477:191–212

    Article  CAS  PubMed  Google Scholar 

  91. Kuzmic P (2009) DynaFit—a software package for enzymology. Methods Enzymol 467:247–280

    Article  CAS  PubMed  Google Scholar 

  92. Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S (2009) NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol 73:680–694

    Article  CAS  PubMed  Google Scholar 

  93. Kommineni S, Yukl E, Hayashi T, Delepine J, Geng H, Moenne-Loccoz P, Nakano MM (2010) Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter. Mol Microbiol 78:1280–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Volbeda A, Crack JC, Le Brun NE, Fontecilla-Camps JC (2020) Structure-function relationships of the NsrR and RsrR transcription regulators. In: Messerschmidt A (ed) Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Hoboken, New Jersey

    Google Scholar 

  95. Crack JC, Svistunenko DA, Munnoch J, Thomson AJ, Hutchings MI, Le Brun NE (2016) Differentiated, promoter-specific response of [4Fe-4S] NsrR DNA binding to reaction with nitric oxide. J Biol Chem 291:8663–8672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Serrano PN, Wang H, Crack JC, Prior C, Hutchings MI, Thomson AJ, Kamali S, Yoda Y, Zhao J, Hu MY, Alp EE, Oganesyan VS, Le Brun NE, Cramer SP (2016) Nitrosylation of nitric oxide-sensing regulatory proteins containing [4Fe-4S] clusters gives rise to multiple iron-nitrosyl complexes. Angew Chem Int Ed Engl 55:14575–14579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yeh SW, Tsou CC, Liaw WF (2014) The dinitrosyliron complex [Fe4(μ3-S2)(μ2-NO)2(NO)6]2− containing bridging nitroxyls: 15N (NO) NMR analysis of the bridging and terminal NO-coordinate ligands. Dalton Trans 43:9022–9025

    Article  CAS  PubMed  Google Scholar 

  98. Bush MJ (2018) The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 110:663–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Victor E, Lippard SJ (2014) A tetranitrosyl [4Fe-4S] cluster forms en route to Roussin's black anion: nitric oxide reactivity of [Fe4S4(LS3)L']2−. Inorg Chem 53:5311–5320

    Article  CAS  PubMed  Google Scholar 

  100. Stewart MYY, Bush MJ, Crack JC, Buttner MJ, Le Brun NE (2020) Interaction of the Streptomyces Wbl protein WhiD with the principal sigma factor σHrdB depends on the WhiD [4Fe-4S] cluster. J Biol Chem 295:9752–9765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the University of East Anglia for funding the purchase of the electrospray ionization mass spectrometer instrument. This work has been supported by a series of grants from the BBSRC over several years, most recently BB/P006140/1 and BB/P006140/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick E. Le Brun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crack, J.C., Le Brun, N.E. (2021). Native Mass Spectrometry of Iron-Sulfur Proteins. In: Dos Santos, P.C. (eds) Fe-S Proteins. Methods in Molecular Biology, vol 2353. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1605-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1605-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1604-8

  • Online ISBN: 978-1-0716-1605-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation