Methods Used to Make Lipid Nanoparticles to Deliver LNA Gapmers Against lncRNAs into Acute Myeloid Leukemia (AML) Blasts

  • Protocol
  • First Online:
Long Non-Coding RNAs in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2348))

Abstract

Develo** strategies to target lncRNAs are needed. In this chapter, we describe in detail a method to deliver antisense oligonucleotides into acute myeloid leukemia cells using lipid nanoparticles tagged with the transferrin receptor. While this chapter is focused on the delivery method, we also discuss important considerations about the design of antisense oligonucleotides (ASOs). The strategy described here has been used successfully to deliver ASOs into leukemic blasts and stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 99.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 06 October 2021

    In the original version of this book, Chapter 11 was published with incorrect author name and affiliation. It has now been updated in the revised version of this book.

References

  1. Hanahan RA, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  2. Garzon R, Marcucci G, Croce R (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Dis 9:775–789

    Article  CAS  Google Scholar 

  3. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartonicek N, Maag JLV, Dinger ME (2016) Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 15:43

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kurreck J, Wyszko E, Gillen C, Erdmann VA (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30:1911–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levin AA (1999) A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1489:69–84

    Article  CAS  PubMed  Google Scholar 

  8. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  CAS  PubMed  Google Scholar 

  9. Kamola PJ, Kitson JDA, Turner G et al (2015) In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucl Acid Res 43:8638–8650

    Article  CAS  Google Scholar 

  10. Tanaka T, Legat A, Adam E et al (2008) DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through toll-like receptor 4. Eur J Immunol 38:1351–1357

    Article  CAS  PubMed  Google Scholar 

  11. Prakash TP, Graham MJ, Yu J et al (2014) Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N- acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res 42:8796–8807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu B, Shi N, Sun L, Liu L (2016) Clinical value of high expression level of CD71 in acute myeloid leukemia. Neoplasma 6:809–815

    Article  Google Scholar 

  13. Liu Q, Wang M, Hu Y et al (2014) Significance of CD71 expression by flow cytometry in AML. Leuk Lymphoma 55:892–898

    Article  CAS  PubMed  Google Scholar 

  14. Huang X, Schwind S, Yu B et al (2013) Targeted delivery of microRNA-29b by transferring-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res 19:2355–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorrance A, Neviani P, Ferenchak G et al (2015) Targeting leukemia stem cells in vivo with AntagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia 29:2143–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Papaioannou D, Petri A, Dovey OM et al (2019) The long non-coding RNA HOXB-AS3 regulates ribosomal biogenesis in NPM1- mutated AML. Nat Commun 10:5351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Garzon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuo, CT., Lee, R.J., Garzon, R. (2021). Methods Used to Make Lipid Nanoparticles to Deliver LNA Gapmers Against lncRNAs into Acute Myeloid Leukemia (AML) Blasts. In: Navarro, A. (eds) Long Non-Coding RNAs in Cancer. Methods in Molecular Biology, vol 2348. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1581-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1581-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1580-5

  • Online ISBN: 978-1-0716-1581-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation