Challenges in Experimental Methods

  • Protocol
  • First Online:
Computer Simulations of Aggregation of Proteins and Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2340))

Abstract

Experimental studies of amyloids encounter many challenges. There are many methods available for studying proteins, which can be applied to amyloids: from basic staining techniques, allowing visualization of fibers, to complex methods, e.g., AFM-IR used to their detailed biochemical and structural characterization in nanoscale. Which method is appropriate depends on the goal of an experiment: verification of aggregational properties of a peptide, distinguishing oligomers from mature fibers, or kinetic studies. Insolubility, rapid aggregation, and the need of using a high-purity peptide may be a limiting factor in studies involving amyloids. Moreover, the results obtained by various experimental methods often differ significantly, which may lead to misclassification of amyloid peptides. Due to ambiguity of experimental results, laborious and time-consuming analysis, bioinformatical methods become more widely used for amyloids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sušec T (2016) Historical review. Acta Clin Croat 55:675. https://doi.org/10.20471/acc.2016.55.01.25

    Article  PubMed  Google Scholar 

  2. Tanskanen M (2013) “Amyloid” — historical aspects. In: Amyloidosis. InTech, Rijeka

    Google Scholar 

  3. Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG (2019) Congo Red and amyloids: history and relationship. Biosci Rep 39:BSR20181415. https://doi.org/10.1042/BSR20181415

    Article  PubMed  PubMed Central  Google Scholar 

  4. Otzen D (2010) Functional amyloid: turning swords into plowshares. Prion 4:256–264. https://doi.org/10.4161/pri.4.4.13676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayden EY, Conovaloff JL, Mason A et al (2018) Preparation of pure populations of amyloid β-protein oligomers of defined size. In: Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 3–12

    Google Scholar 

  6. Erskine E, MacPhee CE, Stanley-Wall NR (2018) Functional amyloid and other protein fibers in the biofilm matrix. J Mol Biol 430:3642–3656. https://doi.org/10.1016/j.jmb.2018.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benson MD, Buxbaum JN, Eisenberg DS et al (2018) Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 25:215–219. https://doi.org/10.1080/13506129.2018.1549825

    Article  CAS  PubMed  Google Scholar 

  8. Wolfe KJ, Cyr DM (2011) Amyloid in neurodegenerative diseases: friend or foe? Semin Cell Dev Biol 22:476–481

    Article  CAS  Google Scholar 

  9. Magalingam KB, Radhakrishnan A, ** NS, Haleagrahara N (2018) Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int 2018:3740461. https://doi.org/10.1155/2018/3740461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dobson CM, Knowles TPJ, Vendruscolo M (2020) The amyloid phenomenon and its significance in biology and medicine. Cold Spring Harb Perspect Biol 12:a033878. https://doi.org/10.1101/cshperspect.a033878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tennent GA (1999) Isolation and characterization of amyloid fibrils from tissue. Methods Enzymol 309:26–47. https://doi.org/10.1016/S0076-6879(99)09004-7

    Article  CAS  PubMed  Google Scholar 

  12. Rostagno A, Ghiso J (2009) Isolation and biochemical characterization of amyloid plaques and paired helical filaments. Curr Protoc Cell Biol 44:3.33.1–3.33.33. https://doi.org/10.1002/0471143030.cb0333s44

    Article  Google Scholar 

  13. Stenstad T, Magnus JH, Syse K, Husby G (1993) On the association between amyloid fibrils and glycosaminoglycans; possible interactive role of Ca2+ and amyloid P-component. Clin Exp Immunol 94:189–195. https://doi.org/10.1111/j.1365-2249.1993.tb05999.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaplan B, Yakar S, Balta Y et al (1997) Isolation and purification of two major serum amyloid A isotypes SAA1 and SAA2 from the acute phase plasma of mice. J Chromatogr B Biomed Appl 704:69–76. https://doi.org/10.1016/S0378-4347(97)00462-3

    Article  CAS  Google Scholar 

  15. Behrens NE, Lipke PN, Pilling D et al (2019) Secretion of inflammatory cytokines. MBio 10:1–14

    Article  Google Scholar 

  16. Cutler P (2003) Protein purification protocols. Humana Press, Totowa, NJ

    Book  Google Scholar 

  17. Esparza TJ, Wildburger NC, Jiang H et al (2016) Soluble amyloid-beta aggregates from human Alzheimer’s disease brains. Sci Rep 6:1–16. https://doi.org/10.1038/srep38187

    Article  CAS  Google Scholar 

  18. Chhetri G, Pandey T, Chinta R et al (2015) An improved method for high-level soluble expression and purification of recombinant amyloid-beta peptide for in vitro studies. Protein Expr Purif 114:71–76. https://doi.org/10.1016/j.pep.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  19. Warner CJA, Dutta S, Foley AR, Raskatov JA (2017) A tailored HPLC purification protocol that yields high-purity amyloid beta 42 and amyloid beta 40 peptides, capable of oligomer formation. J Vis Exp 2017:4–9. https://doi.org/10.3791/55482

    Article  CAS  Google Scholar 

  20. Danielsen HN, Hansen SH, Herbst FA et al (2017) Direct identification of functional amyloid proteins by label-free quantitative mass spectrometry. Biomolecules 7:1–9. https://doi.org/10.3390/biom7030058

    Article  CAS  Google Scholar 

  21. Ahmed AB, Kajava AV (2013) Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence. FEBS Lett 587:1089–1095. https://doi.org/10.1016/j.febslet.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  22. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis : a practical approach. Oxford University Press, Oxford

    Google Scholar 

  23. Chiti F, Stefani M, Taddei N et al (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808. https://doi.org/10.1038/nature01891

    Article  CAS  PubMed  Google Scholar 

  24. Palmieri LC, Melo-Ferreira B, Braga CA et al (2013) Stepwise oligomerization of murine amylin and assembly of amyloid fibrils. Biophys Chem 180–181:135–144. https://doi.org/10.1016/j.bpc.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  25. Pawar AP, DuBay KF, Zurdo J et al (2005) Prediction of “aggregation-prone” and “aggregation- susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol 350:379–392. https://doi.org/10.1016/j.jmb.2005.04.016

    Article  CAS  PubMed  Google Scholar 

  26. Stawikowski M, Fields GB (2012) Introduction to peptide synthesis. Curr Protoc Protein Sci Chapter 18:Unit 18.1. https://doi.org/10.1002/0471140864.ps1801s69

    Article  PubMed  Google Scholar 

  27. Yang Y (2015) Side reactions in peptide synthesis. Elsevier Inc., Amsterdam

    Google Scholar 

  28. Tickler A, Clip**dale A, Wade J (2004) Amyloid-beta as a “difficult sequence” in solid phase peptide synthesis. Protein Pept Lett 11:377–384. https://doi.org/10.2174/0929866043406986

    Article  CAS  PubMed  Google Scholar 

  29. Tam JP, Lu YA (1995) Coupling difficulty associated with interchain clustering and phase transition in solid phase peptide synthesis. J Am Chem Soc 117:12058–12063. https://doi.org/10.1021/ja00154a004

    Article  CAS  Google Scholar 

  30. Nakaie CR, Oliveira E, Vicente EF et al (2011) Solid-phase peptide synthesis in highly loaded conditions. Bioorg Chem 39:101–109. https://doi.org/10.1016/j.bioorg.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  31. Breinbauer R (2009) The power of functional resins in organic synthesis. Edited by Judit Tulla-Puche and Fernando Albericio. Angew Chem Int Ed 48:3560–3561. https://doi.org/10.1002/anie.200900955

    Article  CAS  Google Scholar 

  32. Bayer E (1991) Towards the chemical synthesis of proteins. Angew Chem Int Ed Eng 30:113–129. https://doi.org/10.1002/anie.199101133

    Article  Google Scholar 

  33. Hyde C, Johnson T, Owen D et al (1994) Some “difficult sequences” made easy. A study of interchain association in solid-phase peptide synthesis. Int J Pept Protein Res 5:431–440

    Google Scholar 

  34. Stewart J, Klis W, Epton R (1990) Innovations and perspectives in solid phase synthesis. SPCC(UK) Ltd., Birmingham

    Google Scholar 

  35. Zhang L, Goldammer C, Henkel B et al (1994) Innovation perspectives in solid phase synthesis. Mayflower Worldwide, Birmingham

    Google Scholar 

  36. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27. https://doi.org/10.1002/psc.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erdélyi M, Gogoll A (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis 11:1592–1596. https://doi.org/10.1055/s-2002-33348

    Article  Google Scholar 

  38. Kasim JK, Kavianinia I, Harris PWR, Brimble MA (2019) Three decades of amyloid beta synthesis: challenges and advances. Front Chem 7:472. https://doi.org/10.3389/fchem.2019.00472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miranda MTM, Liria CW, Remuzgo C (2011) Difficult peptides. In: Amino acids, peptides and proteins in organic chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 549–569

    Google Scholar 

  40. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160. https://doi.org/10.1016/j.ymeth.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  41. Shen CL, Murphy RM (1995) Solvent effects on self-assembly of beta-amyloid peptide. Biophys J 69:640–651. https://doi.org/10.1016/S0006-3495(95)79940-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei G, Shea JE (2006) Effects of solvent on the structure of the Alzheimer amyloid-β(25-35) peptide. Biophys J 91:1638–1647. https://doi.org/10.1529/biophysj.105.079186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gade Malmos K, Blancas-Mejia LM, Weber B et al (2017) ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid 24:1–16. https://doi.org/10.1080/13506129.2017.1304905

    Article  CAS  PubMed  Google Scholar 

  44. Pachahara SK, Chaudhary N, Subbalakshmi C, Nagaraj R (2012) Hexafluoroisopropanol induces self-assembly of β-amyloid peptides into highly ordered nanostructures. J Pept Sci 18:233–241. https://doi.org/10.1002/psc.2391

    Article  CAS  PubMed  Google Scholar 

  45. Ryan TM, Caine J, Mertens HDT et al (2013) Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 1:e73. https://doi.org/10.7717/peerj.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Teplow DB (2006) Preparation of amyloid β-protein for structural and functional studies. Methods Enzymol 413:20–33

    Article  CAS  Google Scholar 

  47. Rajamohamedsait HB, Sigurdsson EM (2012) Histological staining of amyloid and pre-amyloid peptides and proteins in mouse tissue. In: Amyloid proteins. Humana Press, Totowa, NJ, pp 411–424

    Chapter  Google Scholar 

  48. Westermark GT, Johnson KH, Westermark P (1999) Staining methods for identification of amyloid in tissue. Methods Enzymol 309:3–25. https://doi.org/10.1016/S0076-6879(99)09003-5

    Article  CAS  PubMed  Google Scholar 

  49. Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276:34156–34161. https://doi.org/10.1074/jbc.M102883200

    Article  CAS  PubMed  Google Scholar 

  50. Linke RP (2007) Congo red staining of amyloid: improvements and practical guide for a more precise diagnosis of amyloid and the different amyloidoses. In: Protein misfolding, aggregation, and conformational diseases. Springer, New York, NY, pp 239–276

    Google Scholar 

  51. Howie AJ (2019) Origins of a pervasive, erroneous idea: the “green birefringence” of congo red‐stained amyloid. Int J Exp Pathol 100:208–221. https://doi.org/10.1111/iep.12330

    Article  PubMed  PubMed Central  Google Scholar 

  52. Clement CG, Truong LD (2014) An evaluation of Congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol 45:1766–1772. https://doi.org/10.1016/j.humpath.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  53. Yakupova EI, Vikhlyantsev IM, Bobyleva LG et al (2018) Different amyloid aggregation of smooth muscles titin in vitro. J Biomol Struct Dyn 36:2237–2248. https://doi.org/10.1080/07391102.2017.1348988

    Article  CAS  PubMed  Google Scholar 

  54. Nielsen L, Khurana R, Coats A et al (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046. https://doi.org/10.1021/bi002555c

    Article  CAS  PubMed  Google Scholar 

  55. Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53:135–160. https://doi.org/10.1016/j.brainresrev.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  56. Podlisny MB, Walsh DM, Amarante P et al (1998) Oligomerization of endogenous and synthetic amyloid β-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 37:3602–3611. https://doi.org/10.1021/bi972029u

    Article  CAS  PubMed  Google Scholar 

  57. Ivancic VA, Ekanayake O, Lazo ND (2016) Binding modes of thioflavin T on the surface of amyloid fibrils studied by NMR. ChemPhysChem 17:2461–2464. https://doi.org/10.1002/cphc.201600246

    Article  CAS  PubMed  Google Scholar 

  58. Ziaunys M, Smirnovas V (2019) Additional thioflavin-T binding mode in insulin fibril inner core region. J Phys Chem B 123:8727–8732. https://doi.org/10.1021/acs.jpcb.9b08652

    Article  CAS  PubMed  Google Scholar 

  59. Lindberg DJ, Wenger A, Sundin E et al (2017) Binding of thioflavin-T to amyloid fibrils leads to fluorescence self-quenching and fibril compaction. Biochemistry 56:2170–2174. https://doi.org/10.1021/acs.biochem.7b00035

    Article  CAS  PubMed  Google Scholar 

  60. Morimoto K, Kawabata K, Kunii S et al (2009) Characterization of type I collagen fibril formation using thioflavin T fluorescent dye. J Biochem 145:677–684. https://doi.org/10.1093/jb/mvp025

    Article  CAS  PubMed  Google Scholar 

  61. Elghetany MT, Saleem A (1988) Methods for staining amyloid in tissues: a review. Stain Technol 63:201–212. https://doi.org/10.3109/10520298809107185

    Article  CAS  PubMed  Google Scholar 

  62. Hackl EV, Darkwah J, Smith G, Ermolina I (2015) Effect of acidic and basic pH on thioflavin T absorbance and fluorescence. Eur Biophys J 44:249–261. https://doi.org/10.1007/s00249-015-1019-8

    Article  CAS  PubMed  Google Scholar 

  63. Girych M, Gorbenko GP, Maliyov I et al (2016) Combined thioflavin T-congo red fluorescence assay for amyloid fibril detection. Methods Appl Fluoresc 4:034010. https://doi.org/10.1088/2050-6120/4/3/034010

    Article  CAS  PubMed  Google Scholar 

  64. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is congo red an amyloid-specific dye? J Biol Chem 276:22715–22721. https://doi.org/10.1074/jbc.M011499200

    Article  CAS  PubMed  Google Scholar 

  65. Gilbertson JA, Theis JD, Vrana JA et al (2015) A comparison of immunohistochemistry and mass spectrometry for determining the amyloid fibril protein from formalin-fixed biopsy tissue. J Clin Pathol 68:314–317. https://doi.org/10.1136/jclinpath-2014-202722

    Article  PubMed  Google Scholar 

  66. Kebbel A, Röcken C (2006) Immunohistochemical classification of amyloid in surgical pathology revisited. Am J Surg Pathol 30:673–683. https://doi.org/10.1097/00000478-200606000-00002

    Article  PubMed  Google Scholar 

  67. Joo Kim M, Baek D, Truong L, Ro JY (2019) Pathologic findings of amyloidosis: recent advances. In: Amyloid diseases. IntechOpen, Rijeka

    Google Scholar 

  68. Ahmed M, Broeckx G, Baggerman G et al (2020) Next-generation protein analysis in the pathology department. J Clin Pathol 73:1–6

    Article  CAS  Google Scholar 

  69. Li H, Rahimi F, Sinha S et al (2009) Amyloids and protein aggregation-analytical methods. In: Encyclopedia of analytical chemistry, 1st edn. Wiley, New York, NY

    Google Scholar 

  70. Nichols MR, Colvin BA, Hood EA et al (2015) Biophysical comparison of soluble amyloid-β(1-42) protofibrils, oligomers, and protofilaments. Biochemistry 54:2193–2204. https://doi.org/10.1021/bi500957g

    Article  CAS  PubMed  Google Scholar 

  71. Bruggink KA, Müller M, Kuiperij HB, Verbeek MM (2012) Methods for analysis of amyloid-β aggregates. J Alzheimers Dis 28:735–758. https://doi.org/10.3233/JAD-2011-111421

    Article  CAS  PubMed  Google Scholar 

  72. Mrdenovic D, Majewska M, Pieta IS et al (2019) Size-dependent interaction of amyloid β oligomers with brain total lipid extract bilayer - fibrillation versus membrane destruction. Langmuir 35:11940–11949. https://doi.org/10.1021/acs.langmuir.9b01645

    Article  CAS  PubMed  Google Scholar 

  73. Zhang H, Zheng X, Kwok RTK et al (2018) In situ monitoring of molecular aggregation using circular dichroism. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-07299-3

    Article  CAS  Google Scholar 

  74. Banerjee B, Misra G, Ashraf MT (2019) Circular dichroism. In: Data processing handbook for complex biological data sources. Elsevier, Amsterdam, pp 21–30

    Chapter  Google Scholar 

  75. Joshi V, Shivach T, Yadav N, Rathore AS (2014) Circular dichroism spectroscopy as a tool for monitoring aggregation in monoclonal antibody therapeutics. Anal Chem 86:11606–11613. https://doi.org/10.1021/ac503140j

    Article  CAS  PubMed  Google Scholar 

  76. Miles AJ, Wallace BA (2016) Circular dichroism spectroscopy of membrane proteins. Chem Soc Rev 45:4859–4872. https://doi.org/10.1039/c5cs00084j

    Article  CAS  PubMed  Google Scholar 

  77. Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses - a review. Chem Biol Drug Des 74:101–120. https://doi.org/10.1111/j.1747-0285.2009.00847.x

    Article  CAS  PubMed  Google Scholar 

  78. Ren B, Hu R, Zhang M et al (2018) Experimental and computational protocols for studies of cross-seeding amyloid assemblies. In: Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 429–447

    Google Scholar 

  79. Juszczyk P, Kołodziejczyk AS, Grzonka Z (2005) Circular dichroism and aggregation studies of amyloid β (11-28) fragment and its variants. Acta Biochim Pol 52:425–431. https://doi.org/10.18388/abp.2005_3455

    Article  CAS  PubMed  Google Scholar 

  80. Benjwal S (2006) Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci 15:635–639. https://doi.org/10.1110/ps.051917406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haken H, Wolf HC (2004) Vibrational spectroscopy. Springer, New York, NY, pp 193–224

    Google Scholar 

  82. Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta Biomembr 1828:2328–2338

    Article  CAS  Google Scholar 

  83. Zandomeneghi G, Krebs MRH, McCammon MG, Fändrich M (2009) FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321. https://doi.org/10.1110/ps.041024904

    Article  CAS  Google Scholar 

  84. Shivu B, Seshadri S, Li J et al (2013) Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy. Biochemistry 52:5176–5183. https://doi.org/10.1021/bi400625v

    Article  CAS  PubMed  Google Scholar 

  85. Ruysschaert JM, Raussens V (2018) ATR-FTIR analysis of amyloid proteins. In: Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 69–81

    Google Scholar 

  86. Cerf E, Sarroukh R, Tamamizu-Kato S et al (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J 421:415–423. https://doi.org/10.1042/BJ20090379

    Article  CAS  PubMed  Google Scholar 

  87. Grdadolnik J (2002) Atr-ftir spectroscopy: its advantages and limitations. Acta Chim Slov 49:631–642

    CAS  Google Scholar 

  88. Kazarian SG, Chan KLA (2013) ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 138:1940–1951. https://doi.org/10.1039/c3an36865c

    Article  CAS  PubMed  Google Scholar 

  89. Corujo MP, Sklepari M, Ang DL et al (2018) Infrared absorbance spectroscopy of aqueous proteins: comparison of transmission and ATR data collection and analysis for secondary structure fitting. Chirality 30:957–965. https://doi.org/10.1002/chir.23002

    Article  CAS  PubMed Central  Google Scholar 

  90. Huang JB, Urban MW (1992) Evaluation and analysis of attenuated total reflectance FT-IR Spectra using Kramers-Kronig transforms. Appl Spectrosc 46:1666–1672. https://doi.org/10.1366/0003702924926970

    Article  CAS  Google Scholar 

  91. Miljković M, Bird B, Diem M (2012) Line shape distortion effects in infrared spectroscopy. Analyst 137:3954–3964. https://doi.org/10.1039/c2an35582e

    Article  CAS  PubMed  Google Scholar 

  92. Goldberg ME, Chaffotte AF (2005) Undistorted structural analysis of soluble proteins by attenuated total reflectance infrared spectroscopy. Protein Sci 14:2781–2792. https://doi.org/10.1110/ps.051678205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zuber G, Prestrelski SJ, Benedek K (1992) Application of Fourier transform infrared spectroscopy to studies of aqueous protein solutions. Anal Biochem 207:150–156. https://doi.org/10.1016/0003-2697(92)90516-A

    Article  CAS  PubMed  Google Scholar 

  94. Bonner OD, Curry JD (1970) Infrared spectra of liquid H2O and D2O. Infrared Phys 10:91–94. https://doi.org/10.1016/0020-0891(70)90003-5

    Article  CAS  Google Scholar 

  95. Fabian H, Mantele W (2006) Infrared spectroscopy of proteins. In: Chalmers JM (ed) Handbook of vibrational spectroscopy. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  96. Cioni P, Strambini GB (2002) Effect of heavy water on protein flexibility. Biophys J 82:3246–3253. https://doi.org/10.1016/S0006-3495(02)75666-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sheu SY, Schlag EW, Selzle HL, Yang DY (2008) Molecular dynamics of hydrogen bonds in protein-D20: the solvent isotope effect. J Phys Chem A 112:797–802. https://doi.org/10.1021/jp0771668

    Article  CAS  PubMed  Google Scholar 

  98. Zhang J, Zhang X, Zhang F, Yu S (2017) Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy. Anal Bioanal Chem 409:4459–4465. https://doi.org/10.1007/s00216-017-0390-y

    Article  CAS  PubMed  Google Scholar 

  99. Kočišová E, Petr M, Šípová H et al (2017) Drop coating deposition of a liposome suspension on surfaces with different wettabilities: “coffee ring” formation and suspension preconcentration. Phys Chem Chem Phys 19:388–393. https://doi.org/10.1039/c6cp07606h

    Article  Google Scholar 

  100. Kopecký V, Baumruk V (2006) Structure of the ring in drop coating deposited proteins and its implication for Raman spectroscopy of biomolecules. Vib Spectrosc 42:184–187. https://doi.org/10.1016/j.vibspec.2006.04.019

    Article  CAS  Google Scholar 

  101. Krüger A, Bürkle A, Mangerich A, Hauser K (2018) A combined approach of surface passivation and specific immobilization to study biomolecules by ATR-FTIR spectroscopy1. Biomed Spectrosc Imaging 7:25–33. https://doi.org/10.3233/bsi-180174

    Article  Google Scholar 

  102. Palombo F, Tamagnini F, Jeynes JCG et al (2018) Detection of Aβ plaque-associated astrogliosis in Alzheimer’s disease brain by spectroscopic imaging and immunohistochemistry. Analyst 143:850–857. https://doi.org/10.1039/c7an01747b

    Article  CAS  PubMed  Google Scholar 

  103. Ami D, Mereghetti P, Leri M et al (2018) A FTIR microspectroscopy study of the structural and biochemical perturbations induced by natively folded and aggregated transthyretin in HL-1 cardiomyocytes. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-30995-5

    Article  CAS  Google Scholar 

  104. Miller LM, Bourassa MW, Smith RJ (2013) FTIR spectroscopic imaging of protein aggregation in living cells. Biochim Biophys Acta Biomembr 1828:2339–2346

    Article  CAS  Google Scholar 

  105. Zohdi V, Whelan DR, Wood BR et al (2015) Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: “Traps for new users”. PLoS One 10:e0116491. https://doi.org/10.1371/journal.pone.0116491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36:307–319. https://doi.org/10.1002/jrs.1323

    Article  CAS  Google Scholar 

  107. Flynn JD, Lee JC (2018) Raman fingerprints of amyloid structures. Chem Commun 54:6983–6986. https://doi.org/10.1039/c8cc03217c

    Article  CAS  Google Scholar 

  108. Kurouski D, Van Duyne RP, Lednev IK (2015) Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst 140:4967–4980

    Article  CAS  Google Scholar 

  109. Lochocki B, Morrema THJ, Ariese F et al (2020) The search for a unique Raman signature of amyloid-beta plaques in human brain tissue from Alzheimer’s disease patients. Analyst 145:1724–1736. https://doi.org/10.1039/c9an02087j

    Article  CAS  PubMed  Google Scholar 

  110. Fan W, **ng L, Chen N et al (2019) Promotion effect of succinimide on amyloid fibrillation of hen egg-white lysozyme. J Phys Chem B 123:8057. https://doi.org/10.1021/acs.jpcb.9b06958

    Article  CAS  PubMed  Google Scholar 

  111. Ishigaki M, Morimoto K, Chatani E, Ozaki Y (2019) Exploration of insulin amyloid polymorphism using Raman spectroscopy and imaging. bioRxiv:782672. https://doi.org/10.1101/782672

  112. Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem J 29:2351–2360.1. https://doi.org/10.1042/bj0292351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Parker MW (2003) Protein structure from X-ray diffraction. J Biol Phys 29:341–362

    Article  CAS  Google Scholar 

  114. Carbajo RJ, Neira JL (2013) NMR for chemists and biologists. Springer, New York, NY

    Book  Google Scholar 

  115. Haken H, Wolf HC (2004) The multi-electron problem in molecular physics and quantum chemistry. Springer, Berlin, pp 147–164

    Google Scholar 

  116. Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299. https://doi.org/10.1146/annurev-physchem-032210-103539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Raghothama S (2010) NMR of peptides. J Indian Inst Sci 90:145

    CAS  Google Scholar 

  118. Sugiki T, Kobayashi N, Fujiwara T (2017) Modern technologies of solution nuclear magnetic resonance spectroscopy for three-dimensional structure determination of proteins open avenues for life scientists. Comput Struct Biotechnol J 15:328–339

    Article  CAS  Google Scholar 

  119. Karamanos TK, Kalverda AP, Thompson GS, Radford SE (2015) Mechanisms of amyloid formation revealed by solution NMR. Prog Nucl Magn Reson Spectrosc 88–89:86–104

    Article  Google Scholar 

  120. Loquet A, El Mammeri N, Stanek J et al (2018) 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 138–139:26–38

    Article  Google Scholar 

  121. Simone Ruggeri F, Habchi J, Cerreta A, Dietler G (2016) AFM-based single molecule techniques: unraveling the amyloid pathogenic species. Curr Pharm Des 22:3950–3970. https://doi.org/10.2174/1381612822666160518141911

    Article  CAS  Google Scholar 

  122. Cohen AS, Calkins E (1959) Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183:1202–1203. https://doi.org/10.1038/1831202a0

    Article  CAS  PubMed  Google Scholar 

  123. Galzitskaya O (2019) New mechanism of amyloid fibril formation. Curr Protein Pept Sci 20:630–640. https://doi.org/10.2174/1389203720666190125160937

    Article  CAS  PubMed  Google Scholar 

  124. Goldsbury C, Baxa U, Simon MN et al (2011) Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 173:1–13. https://doi.org/10.1016/j.jsb.2010.09.018

    Article  CAS  PubMed  Google Scholar 

  125. Voigtländer B (2019) Atomic force microscopy. Springer International Publishing, Cham

    Book  Google Scholar 

  126. Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ (2019) Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys 664:134–148. https://doi.org/10.1016/j.abb.2019.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chiang YL, Chang YC, Chiang IC et al (2015) Atomic force microscopy characterization of protein fibrils formed by the amyloidogenic region of the bacterial protein MinE on mica and a supported lipid bilayer. PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0142506

    Article  CAS  Google Scholar 

  128. Shlyakhtenko LS, Gall AA, Lyubchenko YL (2013) Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 931:295–312. https://doi.org/10.1007/978-1-62703-056-4_13

    Article  CAS  PubMed  Google Scholar 

  129. Möller C, Allen M, Elings V et al (1999) Tap**-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys J 77:1150–1158. https://doi.org/10.1016/S0006-3495(99)76966-3

    Article  PubMed  PubMed Central  Google Scholar 

  130. Watanabe-Nakayama T, Ono K, Itami M et al (2016) High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates. Proc Natl Acad Sci U S A 113:5835–5840. https://doi.org/10.1073/pnas.1524807113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Adamcik J, Lara C, Usov I et al (2012) Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4:4426–4429. https://doi.org/10.1039/c2nr30768e

    Article  CAS  PubMed  Google Scholar 

  132. Sweers K, van der Werf K, Bennink M, Subramaniam V (2011) Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and peakforce QNM. Nanoscale Res Lett 6:1–10. https://doi.org/10.1186/1556-276X-6-270

    Article  CAS  Google Scholar 

  133. Winey M, Meehl JB, O’Toole ET, Giddings TH (2014) Conventional transmission electron microscopy. Mol Biol Cell 25:319–323. https://doi.org/10.1091/mbc.E12-12-0863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Williams DB, Carter CB, Williams DB, Carter CB (2009) Inelastic scattering and beam damage. In: Transmission electron microscopy. Springer, New York, NY, pp 53–71

    Chapter  Google Scholar 

  135. Gras SL, Waddington LJ, Goldie KN (2011) Transmission electron microscopy of amyloid fibrils. Methods Mol Biol 752:197–214. https://doi.org/10.1007/978-1-60327-223-0_13

    Article  CAS  PubMed  Google Scholar 

  136. Leung N, Nasr SH, Sethi S (2012) How I treat amyloidosis: the importance of accurate diagnosis and amyloid ty**. Blood 120:3206–3213. https://doi.org/10.1182/blood-2012-03-413682

    Article  CAS  PubMed  Google Scholar 

  137. Fischer ER, Hansen BT, Nair V et al (2012) Scanning electron microscopy. In: Current protocols in microbiology. John Wiley & Sons, Inc, Hoboken, NJ, pp 2B.2.1–2B.2.47

    Google Scholar 

  138. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68. https://doi.org/10.1146/annurev-biochem-061516-045115

    Article  CAS  PubMed  Google Scholar 

  139. Langkilde AE, Vestergaard B (2009) Methods for structural characterization of prefibrillar intermediates and amyloid fibrils. FEBS Lett 583:2600–2609. https://doi.org/10.1016/j.febslet.2009.05.040

    Article  CAS  PubMed  Google Scholar 

  140. Orlov I, Myasnikov AG, Andronov L et al (2017) The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 109:81–93

    Article  CAS  Google Scholar 

  141. Dubochet J, McDowall AW (1981) Vitrification of pure water for electron microscopy. J Microsc 124:3–4. https://doi.org/10.1111/j.1365-2818.1981.tb02483.x

    Article  Google Scholar 

  142. Grassucci RA, Taylor DJ, Frank J (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nat Protoc 2:3239–3246. https://doi.org/10.1038/nprot.2007.452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sorci M, Grassucci RA, Hahn I et al (2009) Time-dependent insulin oligomer reaction pathway prior to fibril formation: cooling and seeding. Proteins Struct Funct Bioinf 77:62–73. https://doi.org/10.1002/prot.22417

    Article  CAS  Google Scholar 

  144. Kollmer M, Close W, Funk L et al (2019) Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun 10:4760. https://doi.org/10.1038/s41467-019-12683-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Almeida ZL, Brito RMM (2020) Structure and aggregation mechanisms in amyloids. Molecules 25:1195

    Article  CAS  Google Scholar 

  146. Guerrero-Ferreira R, Taylor NMI, Arteni AA et al (2019) Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. elife 8:e48907. https://doi.org/10.7554/eLife.48907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Malishev R, Tayeb-Fligelman E, David S et al (2018) Reciprocal interactions between membrane bilayers and S. aureus PSMα3 cross-α amyloid fibrils account for species-specific cytotoxicity. J Mol Biol 430:1431–1441. https://doi.org/10.1016/j.jmb.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  148. Ruggeri FS, Šneideris T, Chia S et al (2019) Characterizing individual protein aggregates by infrared nanospectroscopy and atomic force microscopy. J Vis Exp:1–12. https://doi.org/10.3791/60108

  149. Kulik AJ, Ruggeri FS, Gruszecki WI, Dietler G (2014) Nanoscale infrared spectroscopy of light harvesting proteins, amyloid structures and collagen fibres. Microsc Anal 28:11–14

    Google Scholar 

  150. Kurouski D, Deckert-gaudig T, Deckert V, Lednev IK (2014) Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced raman spectroscopy (TERS). Biophys J 106:263–271. https://doi.org/10.1016/j.bpj.2013.10.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kurouski D, Deckert-gaudig T, Deckert V, Lednev IK (2012) Structure and composition of insulin fibril surfaces probed by TERS. J Am Chem Soc 134:13323–13329. https://doi.org/10.1021/ja303263y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fränzl M, Thalheim T, Adler J et al (2019) Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nat Methods 16:611–614. https://doi.org/10.1038/s41592-019-0451-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Science Centre, Poland, Grant 2019/35/B/NZ2/03997(MGG) and Grant No. 2017/26/D/ST5/00341 (MS), National Centre for Research and Development, Poland under POWR.03.02.00-00-I003/16 (NS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlena E. Gąsior-Głogowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gąsior-Głogowska, M.E., Szulc, N., Szefczyk, M. (2022). Challenges in Experimental Methods. In: Li, M.S., Kloczkowski, A., Cieplak, M., Kouza, M. (eds) Computer Simulations of Aggregation of Proteins and Peptides . Methods in Molecular Biology, vol 2340. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1546-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1546-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1545-4

  • Online ISBN: 978-1-0716-1546-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation