Electron Attachment to Isolated Molecules as a Probe to Understand Mitochondrial Reductive Processes

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2277))

Abstract

This chapter describes the complementary experimental techniques Electron Transmission Spectroscopy and Dissociative Electron Attachment Spectroscopy, two of the most suitable means for investigating interactions between electrons and gas-phase molecules, resonance formation of temporary molecular negative ions, and their possible decay through the dissociative electron attachment (DEA) mechanism. The latter can be seen as the gas-phase counterpart of the transfer of a solvated electron in solution, accompanied by dissociation of the molecular anion, referred to as dissociative electron transfer (DET). DET takes place in vivo under reductive conditions, for instance, in the intermembrane space of mitochondria under interaction of xenobiotic molecules possessing high electron affinity with electrons “leaked” from the mitochondrial respiratory chain. A likely mechanism of the toxic activity of dichlorodiphenyltrichloroethane based on its DEA properties is briefly outlined, and compared with the well-established harmful effects of the model toxicant carbon tetrachloride ascribed to reductive dechlorination in a cellular ambient. A possible mechanism of the antioxidant activity of polyphenolic compounds present near the main site of superoxide anion production in mitochondria is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM (2011) Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 120(S1):S49–S75

    Article  CAS  PubMed  Google Scholar 

  2. Nizzetto L, Macleod M, Borgå K, Cabrerizo A, Dachs J, Guardo AD et al (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44:6526–6531

    Article  CAS  PubMed  Google Scholar 

  3. Scatena R (2012) Mitochondria and drugs. Adv Exp Med Biol 942:329–346

    Article  CAS  PubMed  Google Scholar 

  4. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharm Rev 54:101–127

    Article  CAS  PubMed  Google Scholar 

  5. Smith RAJ, Hartley RC, Murphy MP (2011) Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal 15:3021–3038

    Article  CAS  PubMed  Google Scholar 

  6. Koopman WJH, Willems PHGM, Smeitink JAM (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141

    Article  CAS  PubMed  Google Scholar 

  7. Jang YC, Remmen HV (2009) The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol 44:256–260

    Article  CAS  PubMed  Google Scholar 

  8. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  CAS  PubMed  Google Scholar 

  9. Franco R, Navarro G, Martínez-Pinilla E (2019) Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals. Antioxidants (Basel) 8:373

    Article  CAS  Google Scholar 

  10. Amorim R, Benfeito S, Teixeira J, Cagide F, Oliveira PJ, Borges F (2018) Targeting mitochondria: the road to mitochondriotropic antioxidants and beyond. In: Mitochondrial biology and experimental therapeutics. Springer, Cham, pp 333–358

    Chapter  Google Scholar 

  11. Edeas M, Weissig V (2013) Targeting mitochondria: strategies, innovations and challenges. The future of medicine will come through mitochondria. Mitochondrion 13:389–390

    Article  CAS  PubMed  Google Scholar 

  12. Weissig V (2019) Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26:40–57. https://doi.org/10.1016/j.molmed.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  13. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  14. Ervin KM, Anusiewicz I, Skurski P, Simons J, Lineberger WC (2003) The only stable state of O2 is the X2Πg ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV. J Phys Chem A 107:8521–8529

    Article  CAS  Google Scholar 

  15. Biaglow JE (1981) Cellular electron transfer and radical mechanisms for drug metabolism. Radiat Res 86:212–242

    Article  CAS  PubMed  Google Scholar 

  16. Antonello S, Maran F (2005) Intramolecular dissociative electron transfer. Chem Soc Rev 34:418–428

    Article  CAS  PubMed  Google Scholar 

  17. Wang C-R, Nguyen J, Lu Q-B (2009) Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J Am Chem Soc 131:11320–11322

    Article  CAS  PubMed  Google Scholar 

  18. Alizadeh E, Sanche L (2012) Precursors of solvated electrons in radiobiological physics and chemistry. Chem Rev 112:5578–5602

    Article  CAS  PubMed  Google Scholar 

  19. Herbert A, M J (2019) Structure of the aqueous electron. Phys Chem Chem Phys 21:20538–20565

    Article  CAS  PubMed  Google Scholar 

  20. Abel B, Buck U, Sobolewski AL, Domcke W (2012) On the nature and signatures of the solvated electron in water. Phys Chem Chem Phys 14:22–34

    Article  CAS  PubMed  Google Scholar 

  21. Sagar DM, Bain CD, Verlet JR (2010) Hydrated electrons at the water/air interface. J Am Chem Soc 132:6917–6919

    Article  CAS  PubMed  Google Scholar 

  22. Derjaguin BV, Churaev NV (1973) Nature of “anomalous water”. Nature 244:430

    Article  Google Scholar 

  23. Pollack GH (2013) The fourth phase of water. Ebner & Sons Publishers, Seattle, WA

    Google Scholar 

  24. Getoff N (2013) Fundamental biological importance of solvated electrons in humans. Horm Mol Biol Clin Investig 16:125–128

    CAS  PubMed  Google Scholar 

  25. Getoff N (2014) Significance of solvated electrons (eaq) as promoters of life on earth. In Vivo 28:61–66

    CAS  PubMed  Google Scholar 

  26. Szent-Györgyi A (1941) Towards a new biochemistry? Science 93:609–611

    Article  PubMed  Google Scholar 

  27. Lovelock JE (1961) Affinity of organic compounds for free electrons with thermal energy: its possible significance in biology. Nature 189:729–732

    Article  CAS  PubMed  Google Scholar 

  28. McFadden J, Al-Khalili J (2018) The origins of quantum biology. Proc Math Phys Eng Sci 474:20180674

    PubMed  PubMed Central  Google Scholar 

  29. Marais A, Adams B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith SL, Sinayskiy I, Krüger TPJ, Petruccione F, van Grondelle R (2018) The future of quantum biology. J R Soc Interface 15:20180640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schulz GJ (1973) Resonances in electron impact on atoms; resonances in electron impact on diatomic molecules. Rev Mod Phys 45(378–423):423–486

    Article  CAS  Google Scholar 

  31. Illenberger E, Momigny J (1992) Gaseous molecular ions. An introduction to elementary processes induced by ionization. Steinkopff Verlag Darmstadt, Springer-Verlag, New York

    Book  Google Scholar 

  32. Christophorou LG (1984) Electron-molecule interactions and their applications. Academic Press, Orlando

    Google Scholar 

  33. Pshenichnyuk SA, Modelli A (2013) Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics? Phys Chem Chem Phys 15:9125–9135

    Article  CAS  PubMed  Google Scholar 

  34. Lyapustina SA, Xu S, Nilles JM, Bowen KH (2000) Solvent-induced stabilization of the naphthalene anion by water molecules: a negative cluster ion photoelectron spectroscopic study. J Chem Phys 112:6643–6648

    Article  CAS  Google Scholar 

  35. Christophorou LG, Hadjiantoniou D (2006) Electron attachment and molecular toxicity. Chem Phys Lett 419:405–410

    Article  CAS  Google Scholar 

  36. Pshenichnyuk SA, Komolov AS (2012) Relation between electron scattering resonances of isolated NTCDA molecules and maxima in the density of unoccupied states of condensed NTCDA layers. J Phys Chem A 116:761–766

    Article  CAS  PubMed  Google Scholar 

  37. Fabrikant II, Caprasecca S, Gallup GA et al (2012) Electron attachment to molecules in a cluster environment. J Chem Phys 136:184301

    Article  CAS  PubMed  Google Scholar 

  38. Pshenichnyuk SA, Modelli A (2014) Resonance electron attachment to plant hormones and its likely connection with biochemical processes. J Chem Phys 140:034313

    Article  PubMed  CAS  Google Scholar 

  39. Pshenichnyuk SA, Modelli A (2012) Electron attachment to antipyretics: possible implications of their metabolic pathways. J Chem Phys 136:234307

    Article  PubMed  CAS  Google Scholar 

  40. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  41. Gregory NL (1966) Carbon tetrachloride toxicity and electron capture. Nature 212:1460–1461

    Article  CAS  PubMed  Google Scholar 

  42. Allan M (1989) Study of triplet states and short-lived negative ions by means of electron impact spectroscopy. J. Elec. Spec. Rel. Phenom. 48:219–351

    Article  CAS  Google Scholar 

  43. Sanche L, Schulz GJ (1972) Electron transmission spectroscopy: rare gases. Phys Rev A 5:1672–1683

    Article  CAS  Google Scholar 

  44. Jordan KD, Burrow PD (1987) Temporary anion states of polyatomic hydrocarbons. Chem Rev 87:557–588

    Article  CAS  Google Scholar 

  45. Modelli A, Pshenichnyuk SA (2013) Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways. Phys Chem Chem Phys 15:1588–1600

    Article  CAS  PubMed  Google Scholar 

  46. Modelli A, Jones D, Pshenichnyuk SA (2013) Electron attachment to indole and related molecules. J Chem Phys 139:184305/1–184305/9

    Article  CAS  Google Scholar 

  47. Pshenichnyuk SA, Modelli A, Komolov AS (2018) Interconnections between dissociative electron attachment and electron-driven biological processes. Int Rev Phys Chem 37:125–170

    Article  CAS  Google Scholar 

  48. Anstöter CS, Rogers JP, Verlet JR (2019) Spectroscopic determination of an anion − π bond strength. J Am Chem Soc 141:6132–6135

    Article  PubMed  CAS  Google Scholar 

  49. Stavros VG, Verlet JR (2016) Gas-phase femtosecond particle spectroscopy: a bottom-up approach to nucleotide dynamics. Annu Rev Phys Chem 67:211–232

    Article  CAS  PubMed  Google Scholar 

  50. Lozano AI, Pamplona B, Kilich T, Łabuda M, Mendes M, Pereira-da-Silva J, García G, Gois PMP, da Silva FF, Limão-Vieira P (2019) The role of electron transfer in the fragmentation of phenyl and cyclohexyl boronic acids. Int J Mol Sci 20:5578

    Article  CAS  PubMed Central  Google Scholar 

  51. Almeida D, da Silva FF, Garcia G, Limao-Vieira P (2013) Selective bond cleavage in potassium collisions with pyrimidine bases of DNA. Phys Rev Lett 110:023201

    Article  PubMed  CAS  Google Scholar 

  52. Christophorou LG (1976) Electron attachment to molecules in dense gases (“quasi-liquids”). Chem Rev 76:409–423

    Article  CAS  Google Scholar 

  53. Ingólfsson O, Weik F, Illenberger E (1996) The reactivity of slow electrons with molecules at different degrees of aggregation: gas phase, clusters and condensed phase. Int J Mass Spectrom Ion Process 155:1–68

    Article  Google Scholar 

  54. Poštulka J, Slavicek P, Fedor J, Fárník M, Kocisek J (2017) Energy transfer in microhydrated uracil, 5-fluorouracil, and 5-bromouracil. J Phys Chem B 121:8965–8974

    Article  PubMed  CAS  Google Scholar 

  55. Ončák M, Meißner R, Arthur-Baidoo E, Denifl S, Luxford TF, Pysanenko A, Fárník M, Pinkas J, Kočišek J (2019) Ring formation and hydration effects in electron attachment to misonidazole. Int J Mol Sci 20:4383

    Article  PubMed Central  CAS  Google Scholar 

  56. Alizadeh E, Orlando TM, Sanche L (2015) Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu Rev Phys Chem 66:379–398

    Article  CAS  PubMed  Google Scholar 

  57. Alizadeh E, Ptasińska S, Sanche L (2016) Transient anions in radiobiology and radiotherapy: from gaseous biomolecules to condensed organic and biomolecular solid. In: Monteiro WA (ed) Radiation effects in materials. IntechOpen, pp 179–230

    Google Scholar 

  58. Fabrikant II, Eden S, Mason NJ, Fedor J (2017) Recent progress in dissociative electron attachment: from diatomics to biomolecules. In: Arimondo E, Lin CC, Yelin SF (eds) Advances in atomic, molecular, and optical physics, vol 66. Academic Press, New York, pp 545–657

    Google Scholar 

  59. Kumar A, Becker D, Adhikary A, Sevilla MD (2019) Reaction of electrons with DNA: radiation damage to radiosensitization. Int J Mol Sci 20:3998

    Article  CAS  PubMed Central  Google Scholar 

  60. Portychová L, Schug KA (2017) Instrumentation and applications of electrochemistry coupled to mass spectrometry for studying xenobiotic metabolism: a review. Anal Chim Acta 993:1–21

    Article  PubMed  CAS  Google Scholar 

  61. Shumyantseva VV, Kuzikov AV, Masamrekh RA, Bulko TV, Archakov AI (2018) From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron 121:192–204

    Article  CAS  PubMed  Google Scholar 

  62. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems – biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    Article  CAS  PubMed  Google Scholar 

  63. Staley SS, Strnad JT (1994) Calculation of the energies of π* negative ion resonance states by the use of Koopmans’ theorem. J Phys Chem 98:116–121

    Article  CAS  Google Scholar 

  64. Chen DA, Gallup GA (1990) The relationship of the virtual orbitals of self-consistent-field theory to temporary negative ions in electron scattering from molecules. J Chem Phys 93:8893/1–8893/9

    Article  Google Scholar 

  65. Simons J, Jordan KD (1987) Ab initio electronic structure of anions. Chem Rev 87:535–555

    Article  CAS  Google Scholar 

  66. Lane NF (1980) The theory of electron-molecule collisions. Rev Mod Phys 52:29–119

    Article  CAS  Google Scholar 

  67. Fabrikant II (2010) Recent progress in the theory of dissociative attachment: from diatomic to biomolecules. J Phys Conf Ser 204:012004

    Article  CAS  Google Scholar 

  68. Modelli A, Jones D, Distefano G (1982) ETS study of the negative ion states of t-butyl and trimethylsilyl derivatives of ethylene and benzene. Chem Phys Lett 86:434–437

    Article  CAS  Google Scholar 

  69. Modelli A, Foffani A, Scagnolari F, Jones D (1989) Effect of halo-substitution on the lowest-lying empty π* orbitals in benzene derivatives: electron transmission and dissociative attachment spectra. Chem Phys Lett 163:269–275

    Article  CAS  Google Scholar 

  70. Stamatovic A, Schulz GJ (1970) Characteristics of the trochoidal electron monochromator. Rev Sci Instrum 41:423–427

    Article  Google Scholar 

  71. Johnston AR, Burrow PD (1982) Scattered-electron rejection in electron transmission spectroscopy. J Electron Spectrosc Relat Phenom 25:119–133

    Article  CAS  Google Scholar 

  72. Brunt JNH, King GC, Read FH (1977) Resonance structure in elastic scattering from helium, neon and argon. J Phys B 10:1289

    Article  CAS  Google Scholar 

  73. Aflatooni K, Gallup GA, Burrow PD (2000) Temporary anion states of dichloroalkanes and selected polychloroalkanes. J Phys Chem A 104:7359–7369

    Article  CAS  Google Scholar 

  74. Khvostenko VI (1981) Negative ions mass spectrometry in organic chemistry. Nauka, Moscow (in Russian)

    Google Scholar 

  75. Pshenichnyuk SA, Asfandiarov NL (2003) The role of free electrons in MALDI: electron capture by molecules of alpha-cyano-4-hydroxycinnamic acid. Eur J Mass Spectrom 10:477–486

    Article  CAS  Google Scholar 

  76. Sharp TE, Dowell JT (1969) Dissociative attachment of electrons in ammonia and ammonia-d3. J Chem Phys 50:3024

    Article  CAS  Google Scholar 

  77. Chantry PJ (1972) Dissociative attachment in carbon dioxide. J Chem Phys 57:3180

    Article  CAS  Google Scholar 

  78. Hipple JA, Condon EU (1945) Detection of metastable ions with the mass spectrometer. Phys Rev 68:54–55

    Article  CAS  Google Scholar 

  79. Hipple JA, Fox RE, Condon EU (1946) Metastable ions formed by electron impact in hydrocarbon gases. Phys Rev 69:347

    Article  CAS  Google Scholar 

  80. Donnally BL, Carr HE (1954) Metastable negative ions. Phys Rev 93:111

    Article  CAS  Google Scholar 

  81. Graupner K, Field TA, Mauracher A et al (2008) Fragmentation of metastable SF6* ions with microsecond lifetimes in competition with autodetachment. J Chem Phys 128:104304

    Article  CAS  PubMed  Google Scholar 

  82. Pshenichnyuk SA, Modelli A (2010) Complex fragmentation pathways of rhodanine and rhodanine-3-acetic acid upon resonant capture of low-energy electrons. Int J Mass Spectrom 294:93–102

    Article  CAS  Google Scholar 

  83. Edelson D, Griffiths JE, McAfee KB (1962) Autodetachment of electrons in sulfur hexafluoride. J Chem Phys 37:917–918

    Article  CAS  Google Scholar 

  84. Pshenichnyuk SA, Vorob’ev AS, Asfandiarov NL, Modelli A (2010) Molecular anion formation in 9,10-anthraquinone: dependence of the electron detachment rate on temperature and incident electron energy. J Chem Phys 132:244313

    Article  PubMed  CAS  Google Scholar 

  85. Odom RW, Smith DL, Futrell JH (1975) A study of electron attachment to SF6 and auto-detachment and stabilization of SF6. J Phys B 8:1349

    Article  CAS  Google Scholar 

  86. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  87. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  88. Modelli A (2003) Electron attachment and intramolecular electron transfer in unsaturated chloroderivatives. Phys Chem Chem Phys 5:2923–2930

    Article  CAS  Google Scholar 

  89. Scheer AM, Aflatooni K, Gallup GA, Burrow PD (2013) Temporary anion states of three herbicide families. J Phys Chem A 118:7242–7248

    Article  PubMed  CAS  Google Scholar 

  90. Burrow PD, Gallup GA, Modelli A (2008) Are there π* shape resonances in electron scattering from phosphate groups? J Phys Chem A 112:4106–4113

    Article  CAS  PubMed  Google Scholar 

  91. Burrow PD, Modelli A (2013) On the treatment of LUMO energies for their use as descriptors. SAR QSAR Environ Res 24:647–659

    Article  CAS  PubMed  Google Scholar 

  92. Modelli A, Hajgató B, Nixon JF, Nyulászi L (2004) Anionic states of six-membered aromatic phosphorus heterocycles as studied by electron transmission spectroscopy and ab initio methods. J Phys Chem A 108:7440–7447

    Article  CAS  Google Scholar 

  93. Modelli A, Jones D, Pshenichnyuk SA (2009) Electron attachment to dye-sensitized solar cell components: Rhodanine and rhodanine-3-acetic acid. J Phys Chem C 114:1725–1732

    Article  CAS  Google Scholar 

  94. Pshenichnyuk SA, Modelli A (2015) ETS and DEAS studies of the reduction of xenobiotics in mitochondrial intermembrane space. Methods Mol Biol 1265:285–305

    Article  CAS  PubMed  Google Scholar 

  95. Pshenichnyuk SA, Komolov AS (2015) Dissociative electron attachment to resveratrol as a likely pathway for generation of the H2 antioxidant species inside mitochondria. J Phys Chem Lett 6:1104–1110

    Article  CAS  PubMed  Google Scholar 

  96. Pshenichnyuk SA, Asfandiarov NL, Vorob’ev AS, Nafikova EP, Komolov AS, Elkin YN, Kulesh NI, Modelli A (2015) Resonance electron attachment to natural polyphenolic compounds and their biological activity. Lett Mater 5:504–512 (in Russian)

    Google Scholar 

  97. Chu SC, Burrow PD (1990) Dissociative attachment of electrons in the chloromethanes. Chem Phys Lett 172:17–22

    Article  CAS  Google Scholar 

  98. Matejcik S, Kiendler A, Stamatovic A, Märk TD (1995) A crossed beam high resolution study of dissociative electron attachment to CCl4. Int J Mass Spectrom Ion Process 149:311–319

    Article  Google Scholar 

  99. Gutteridge JM, Halliwell B (1990) The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 15:129–135

    Article  CAS  PubMed  Google Scholar 

  100. Basu S (2003) Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology 189:113–127

    Article  CAS  PubMed  Google Scholar 

  101. Recknagel RO, Glende EA Jr, Dolak JA, Waller RL (1989) Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 43:139–154

    Article  CAS  PubMed  Google Scholar 

  102. Brattin WJ, Glende EA Jr, Recknagel RO (1985) Pathological mechanisms in carbon tetrachloride hepatotoxicity. J Free Radic Biol Med 1:27–38

    Article  CAS  PubMed  Google Scholar 

  103. Schweizer S, Rusling JF, Huang Q (1994) Electrolytic dechlorination of DDT in a bicontinuous microemulsion. Chemosphere 28:961–970

    Article  CAS  Google Scholar 

  104. Shikov AN, Pozharitskaya ON, Krishtopina AS, Makarov VG (2018) Naphthoquinone pigments from sea urchins: chemistry and pharmacology. Phytochem Rev 17:509–534

    Article  CAS  Google Scholar 

  105. Perez-Vizcaino F, Fraga CG (2018) Research trends in flavonoids and health. Arch Biochem Biophys 646:107–112

    Article  CAS  PubMed  Google Scholar 

  106. Teixeira J, Deus CM, Borges F, Oliveira PJ (2018) Mitochondria: targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. Int J Biochem Cell Biol 97:98–103

    Article  CAS  PubMed  Google Scholar 

  107. Pshenichnyuk SA, Elkin YN, Kulesh NI, Lazneva EF, Komolov AS (2015) Low-energy electron interaction with retusin extracted from Maackia amurensis: towards a molecular mechanism of the biological activity of flavonoids. Phys Chem Chem Phys 17:16805–16812

    Article  CAS  PubMed  Google Scholar 

  108. Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L (2005) Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys Acta 1721:174–184

    Article  CAS  PubMed  Google Scholar 

  109. Hendrickson HP, Kaufman AD, Lunte CE (1994) Electrochemistry of catechol-containing flavonoids. J Pharm Biomed Anal 12:325–334

    Article  CAS  PubMed  Google Scholar 

  110. Palladin W (1908) Die Atmungspigmente der Pflanzen. Hoppe-Seyler s Zeitschrift für physiologische Chemie 55(2):207–222

    Article  CAS  Google Scholar 

  111. Ohta S (2012) Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim Biophys Acta 1820:586–594

    Article  CAS  PubMed  Google Scholar 

  112. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Ken-ichiro Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688

    Article  CAS  PubMed  Google Scholar 

  113. Fabrikant II (2018) Electron attachment to molecules in a cluster environment: suppression and enhancement effects. Eur Phys J D 72:96

    Article  CAS  Google Scholar 

  114. Mensa-Bonsu G, Lietard A, Verlet JR (2019) Enhancement of electron accepting ability of para-benzoquinone by a single water molecule. Phys Chem Chem Phys 21:21689–21692

    Article  CAS  PubMed  Google Scholar 

  115. Modelli A, Guerra M, Jones D, Distefano G, Tronc M (1998) Low-energy electron capture in group 14 methyl chlorides and tetrachlorides: electron transmission and dissociative electron attachment spectra and MS-Xα calculations. J Chem Phys 108:9004–9015

    Article  CAS  Google Scholar 

  116. Pearl DM, Burrow PD (1994) Dissociative attachment in selected monochloroalkanes. J Chem Phys 101:2940–2948

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Russian Foundation for Basic Research (grant #18-03-00179) and the Italian Ministero dell’Istruzione, dell’Università e della Ricerca for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav A. Pshenichnyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pshenichnyuk, S.A., Modelli, A. (2021). Electron Attachment to Isolated Molecules as a Probe to Understand Mitochondrial Reductive Processes. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 2277. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1270-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1270-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1269-9

  • Online ISBN: 978-1-0716-1270-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation