Isotope-Dilution Liquid Chromatography–Tandem Mass Spectrometry for Detection of 5-Hydroxymethyluracil and 5-Formyluracil in DNA

  • Protocol
  • First Online:
DNA Modification Detection Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

5-Hydroxymethyluracil (5hmU) and 5-formyluracil (5fU) are mutagenic and major oxidized nucleobases in DNA that are derived from thymine (T) or 5-methylcytosine (5mC). 5hmU, and possibly 5fU as well, in DNA may also assume an epigenetic role. The analysis of 5hmU and 5fU in DNA has suffered from multiple drawbacks such as a lack of specificity, artifacts generated in sample preparation, as well as poor applicability to analysis of nucleoside forms of DNA base damage. To overcome these problems, we developed a capillary liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS3) method that is combined with the stable isotope-dilution technique, which allows quantification of 5hmU, 5fU, and several other oxidation products in DNA with high sensitivity, specificity, and accuracy. In this chapter, we describe in detail the protocols from DNA extraction, through DNA digestion and off-line HPLC enrichment, to LC-MS3 analysis. The method is readily applicable to other modified nucleosides in DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  PubMed  Google Scholar 

  2. Lindahl T (1999) DNA lesions generated in vivo by reactive oxygen species, their accumulation and repair. NATO ASI Ser Ser A 302:251–257

    CAS  Google Scholar 

  3. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  4. Cadet J, Bellon S, Douki T et al (2004) Radiation-induced DNA damage: formation, measurement, and biochemical features. J Environ Pathol Toxicol Oncol 23:33–43

    Article  CAS  PubMed  Google Scholar 

  5. Kasai H, Iida A, Yamaizumi Z et al (1990) 5-Formyldeoxyuridine: a new type of DNA damage induced by ionizing radiation and its mutagenicity to salmonella strain TA102. Mutat Res 243:249–253

    Article  CAS  PubMed  Google Scholar 

  6. Olinski R, Starczak M, Gackowski D (2016) Enigmatic 5-hydroxymethyluracil: oxidatively modified base, epigenetic mark or both? Mutat Res Rev Mutat Res 767:59–66

    Article  CAS  PubMed  Google Scholar 

  7. Teebor GW, Boorstein RJ, Cadet J (1988) The repairability of oxidative free radical mediated damage to DNA: a review. Int J Radiat Biol 54:131–150

    Article  CAS  PubMed  Google Scholar 

  8. Levy DD, Teebor GW (1991) Site directed substitution of 5-hydroxymethyluracil for thymine in replicating phi X-174am3 DNA via synthesis of 5-hydroxymethyl-2′-deoxyuridine-5′-triphosphate. Nucleic Acids Res 19:3337–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herrala AM, Vilpo JA (1989) Template-primer activity of 5-(hydroxymethyl)uracil-containing DNA for prokaryotic and eukaryotic DNA and RNA polymerases. Biochemistry 28:8274–8277

    Article  CAS  PubMed  Google Scholar 

  10. Mellac S, Fazakerley GV, Sowers LC (1993) Structures of base pairs with 5-(hydroxymethyl)-2′-deoxyuridine in DNA determined by NMR spectroscopy. Biochemistry 32:7779–7786

    Article  CAS  PubMed  Google Scholar 

  11. Rusmintratip V, Sowers LC (2000) An unexpectedly high excision capacity for mispaired 5-hydroxymethyluracil in human cell extracts. Proc Natl Acad Sci U S A 97:14183–14187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto H, Hong S, Bhagwat AS et al (2012) Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res 40:10203–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morera S, Grin I, Vigouroux A et al (2012) Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Res 40:9917–9926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cortellino S, Xu J, Sannai M et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wibley JE, Waters TR, Haushalter K et al (2003) Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol Cell 11:1647–1659

    Article  CAS  PubMed  Google Scholar 

  16. Modrzejewska M, Gawronski M, Skonieczna M et al (2016) Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA. Free Radic Biol Med 101:378–383

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki F, Martinez Cuesta S, Beraldi D et al (2018) Sequencing 5-hydroxymethyluracil at single-base resolution. Angew Chem Int Ed Engl 57:9694–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawasaki F, Beraldi D, Hardisty RE et al (2017) Genome-wide map** of 5-hydroxymethyluracil in the eukaryote parasite Leishmania. Genome Biol 18:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pfaffeneder T, Spada F, Wagner M et al (2014) Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 10:574–581

    Article  CAS  PubMed  Google Scholar 

  20. Klungland A, Paulsen R, Rolseth V et al (2001) 5-Formyluracil and its nucleoside derivatives confer toxicity and mutagenicity to mammalian cells by interfering with normal RNA and DNA metabolism. Toxicol Lett 119:71–78

    Article  CAS  PubMed  Google Scholar 

  21. Kamiya H, Murata-Kamiya N, Karino N et al (2002) Induction of T --> G and T --> A transversions by 5-formyluracil in mammalian cells. Mutat Res 513:213–222

    Article  CAS  PubMed  Google Scholar 

  22. Terato H, Masaoka A, Kobayashi M et al (1999) Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during dna replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS). J Biol Chem 274:25144–25150

    Article  CAS  PubMed  Google Scholar 

  23. Masaoka A, Terato H, Kobayashi M et al (1999) Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II). J Biol Chem 274:25136–25143

    Article  CAS  PubMed  Google Scholar 

  24. Bjelland S, Birkeland NK, Benneche T et al (1994) DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J Biol Chem 269:30489–30495

    Article  CAS  PubMed  Google Scholar 

  25. Knaevelsrud I, Slupphaug G, Leiros I et al (2009) Opposite-base dependent excision of 5-formyluracil from DNA by hSMUG1. Int J Radiat Biol 85:413–420

    Article  CAS  PubMed  Google Scholar 

  26. Matsubara M, Masaoka A, Tanaka T et al (2003) Mammalian 5-formyluracil-DNA glycosylase. 1. Identification and characterization of a novel activity that releases 5-formyluracil from DNA. Biochemistry 42:4993–5002

    Article  CAS  PubMed  Google Scholar 

  27. Masaoka A, Matsubara M, Hasegawa R et al (2003) Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry 42:5003–5012

    Article  CAS  PubMed  Google Scholar 

  28. Liu P, Burdzy A, Sowers LC (2003) Repair of the mutagenic DNA oxidation product, 5-formyluracil. DNA Repair 2:199–210

    Article  CAS  PubMed  Google Scholar 

  29. Schiesser S, Pfaffeneder T, Sadeghian K et al (2013) Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J Am Chem Soc 135:14593–14599

    Article  CAS  PubMed  Google Scholar 

  30. Cadet J, Odin F, Mouret JF et al (1992) Chemical and biochemical postlabeling methods for singling out specific oxidative DNA lesions. Mutat Res 275:343–354

    Article  CAS  PubMed  Google Scholar 

  31. Teebor GW, Frenkel K, Goldstein MS (1984) Ionizing radiation and tritium transmutation both cause formation of 5-hydroxymethyl-2′-deoxyuridine in cellular DNA. Proc Natl Acad Sci U S A 81:318–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frenkel K, Cummings A, Solomon J et al (1985) Quantitative determination of the 5-(hydroxymethyl)uracil moiety in the DNA of gamma-irradiated cells. Biochemistry 24:4527–4533

    Article  CAS  PubMed  Google Scholar 

  33. Bjelland S, Eide L, Time RW et al (1995) Oxidation of thymine to 5-formyluracil in DNA: mechanisms of formation, structural implications, and base excision by human cell free extracts. Biochemistry 34:14758–14764

    Article  CAS  PubMed  Google Scholar 

  34. Dizdaroglu M, Jaruga P, Birincioglu M et al (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115

    Article  CAS  PubMed  Google Scholar 

  35. Douki T, Delatour T, Paganon F et al (1996) Measurement of oxidative damage at pyrimidine bases in gamma-irradiated DNA. Chem Res Toxicol 9:1145–1151

    Article  CAS  PubMed  Google Scholar 

  36. Mori T, Dizdaroglu M (1994) Ionizing radiation causes greater DNA base damage in radiation-sensitive mutant M10 cells than in parent mouse lymphoma L5178Y cells. Radiat Res 140:85–90

    Article  CAS  PubMed  Google Scholar 

  37. Dizdaroglu M (1998) Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography-mass spectrometry. Free Radic Res 29:551–563

    Article  CAS  PubMed  Google Scholar 

  38. Cadet J, Douki T, Ravanat JL (1997) Artifacts associated with the measurement of oxidized DNA bases. Environ Health Perspect 105:1034–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cadet J, Douki T, Frelon S et al (2002) Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement. Free Radic Biol Med 33:441–449

    Article  CAS  PubMed  Google Scholar 

  40. Frelon S, Douki T, Ravanat JL et al (2000) High-performance liquid chromatography--tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem Res Toxicol 13:1002–1010

    Article  CAS  PubMed  Google Scholar 

  41. Hua Y, Wainhaus SB, Yang Y et al (2001) Comparison of negative and positive ion electrospray tandem mass spectrometry for the liquid chromatography tandem mass spectrometry analysis of oxidized deoxynucleosides. J Am Soc Mass Spectrom 12:80–87

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Yuan B, Guerrero C et al (2011) Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method. Anal Chem 83:2201–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tretyakova N, Goggin M, Sangaraju D et al (2012) Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem Res Toxicol 25:2007–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hong H, Cao H, Wang Y et al (2006) Identification and quantification of a guanine-thymine intrastrand cross-link lesion induced by Cu(II)/H2O2/ascorbate. Chem Res Toxicol 19:614–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The development of the methodology used on which this procedure was prepared was supported by the National Institutes of Health (Grants R01 CA101864, R01 DK082779, R01 DK071111, and P30-DK41296). The preparation of this procedure was supported by Inner Mongolia University with a grant from its “Outstanding Young Talents” Program (to YL) and a grant from its “Steed Plan” High-Level Talents Program (to JW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, Y., Wang, J. (2022). Isotope-Dilution Liquid Chromatography–Tandem Mass Spectrometry for Detection of 5-Hydroxymethyluracil and 5-Formyluracil in DNA. In: Yuan, BF. (eds) DNA Modification Detection Methods . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1229-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1229-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1228-6

  • Online ISBN: 978-1-0716-1229-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation