Electrophysiological and Calcium Imaging Approaches to Study Metabotropic Glutamate Receptors

  • Protocol
  • First Online:
Metabotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 164))

  • 477 Accesses

Abstract

The activation of metabotropic glutamate receptors (mGluRs) has a strong impact on neuronal action potential generation, membrane potential, and input resistance. Activation of mGluR, however, does not directly cause charge movement across the plasma membrane, and thus cannot be directly measured in an electrophysiological recording. Instead, mGluR activation can affect numerous downstream targets, many of which are ion channels that can be studied using electrophysiological and/or Ca2+ imaging techniques. Hence, electrophysiological research on mGluR-mediated effects has become a well-established field. This chapter will give examples of methods used to investigate the cellular electrophysiology and downstream mechanisms of mGluR activation. First, examples of downstream signaling targets that can be identified using electrophysiological techniques or a combination of Ca2+-imaging and electrophysiology are given. Second, the importance of Ca2+ ions in such downstream signaling is explained. Lastly, the use of voltage ramps in analyzing mGluR downstream effects is emphasized. These techniques have proven beneficial for understanding the role of mGluRs in many physiological and pathophysiological contexts, such as oscillatory thalamocortical and hippocampal activity, electrical and chemical synaptic plasticity, neurodegenerative diseases, epileptogenesis, alcohol dependence, and anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121:799–817. https://doi.org/10.1007/s00702-014-1180-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S. https://doi.org/10.1093/jn/130.4.1007s

    Article  CAS  PubMed  Google Scholar 

  3. Blethyn KL (2006) Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci 26:2474–2486. https://doi.org/10.1523/JNEUROSCI.3607-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hughes SW, Errington A, Lorincz ML, Kékesi KA, Juhász G, Orbán G, Cope DW, Crunelli V (2008) Novel modes of rhythmic burst firing at cognitively-relevant frequencies in thalamocortical neurons. Brain Res 1235:12–20. https://doi.org/10.1016/j.brainres.2008.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Govindaiah G, Kang YJ, Lewis HES, Chung L, Clement EM, Greenfield LJ, Garcia-Rill E, Lee SH (2018) Group I metabotropic glutamate receptors generate two types of intrinsic membrane oscillations in hippocampal oriens/alveus interneurons. Neuropharmacology 139:150–162. https://doi.org/10.1016/j.neuropharm.2018.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bikbaev A, Manahan-Vaughan D (2017) Metabotropic glutamate receptor, mGlu5, regulates hippocampal synaptic plasticity and is required for tetanisation-triggered changes in theta and gamma oscillations. Neuropharmacology 115:20–29. https://doi.org/10.1016/j.neuropharm.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  7. Dietz B, Manahan-Vaughan D (2017) Neuropharmacology hippocampal long-term depression is facilitated by the acquisition and updating of memory of spatial auditory content and requires mGlu5 activation. Neuropharmacology 115:30–41. https://doi.org/10.1016/j.neuropharm.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  8. Wang Z, Neely R, Landisman CE (2015) Activation of group I and group II metabotropic glutamate receptors causes LTD and LTP of electrical synapses in the rat thalamic reticular nucleus. J Neurosci 35:7616–7625. https://doi.org/10.1523/JNEUROSCI.3688-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coulon P, Landisman CE (2017) The potential role of gap junctional plasticity in the regulation of state. Neuron 93:1275–1295. https://doi.org/10.1016/j.neuron.2017.02.041

    Article  CAS  PubMed  Google Scholar 

  10. Spampinato SF, Copani A, Nicoletti F, Sortino MA, Caraci F (2018) Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front Mol Neurosci 11:414. https://doi.org/10.3389/fnmol.2018.00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ribeiro FM, Vieira LB, Pires RGW, Olmo RP, Ferguson SSG (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115:179–191. https://doi.org/10.1016/j.phrs.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  12. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322. https://doi.org/10.1146/annurev.pharmtox.011008.145533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong RK, Bianchi R, Taylor GW, Merlin LR (1999) Role of metabotropic glutamate receptors in epilepsy. Adv Neurol 79:685–698

    CAS  PubMed  Google Scholar 

  14. Merlin LR (2002) Differential roles for mGluR1 and mGluR5 in the persistent prolongation of epileptiform bursts. J Neurophysiol 87:621–625

    Article  CAS  Google Scholar 

  15. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Neuropharmacology metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041. https://doi.org/10.1016/j.neuropharm.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  16. Maksymetz J, Moran SP, Conn PJ (2017) Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 10:1–19. https://doi.org/10.1186/s13041-017-0293-z

    Article  CAS  Google Scholar 

  17. Blacker CJ, Lewis CP, Frye MA, Veldic M (2017) Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res 257:327–337. https://doi.org/10.1016/j.psychres.2017.07.059

    Article  CAS  PubMed  Google Scholar 

  18. Litim N, Morissette M, Di Paolo T (2017) Metabotropic glutamate receptors as therapeutic targets in Parkinson’s disease: an update from the last 5 years of research. Neuropharmacology 115:166–179. https://doi.org/10.1016/j.neuropharm.2016.03.036

    Article  CAS  PubMed  Google Scholar 

  19. Golubeva AV, Moloney RD, O’Connor RM, Dinan TG, Cryan JF (2016) Metabotropic glutamate receptors in central nervous system diseases. Curr Drug Targets 17:538–616. https://doi.org/10.2174/1389450116666150316224011

    Article  CAS  PubMed  Google Scholar 

  20. Govindaiah G, Wang T, Gillette MU, Cox CL (2012) Activity-dependent regulation of retinogeniculate signaling by metabotropic glutamate receptors. J Neurosci 32:12820–12831. https://doi.org/10.1523/JNEUROSCI.0687-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato N (1993) Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex. Proc Natl Acad Sci 90:3650–3654. https://doi.org/10.1073/pnas.90.8.3650

    Article  CAS  PubMed  Google Scholar 

  22. Heuss C, Scanziani M, Gähwiler BH, Gerber U (1999) G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 2:1070–1077. https://doi.org/10.1038/15996

    Article  CAS  PubMed  Google Scholar 

  23. Kim CH, Lee J, Lee J-Y, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86:1–10. https://doi.org/10.1002/jnr.21437

    Article  CAS  PubMed  Google Scholar 

  24. Coutinho V, Knöpfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8:551–561. https://doi.org/10.1177/1073858402238514

    Article  CAS  PubMed  Google Scholar 

  25. Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 29:83–120

    Article  CAS  Google Scholar 

  26. Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47. https://doi.org/10.1016/S0166-4328(02)00272-3

    Article  CAS  PubMed  Google Scholar 

  27. Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377. https://doi.org/10.1016/j.tins.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  28. Ure J, Baudry M (2006) Metabotropic glutamate receptors and epilepsy. J Neurol Sci 247:1–9. https://doi.org/10.1016/j.jns.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  29. Fukuyama K, Kato R, Murata M, Shiroyama T (2019) Clozapine normalizes a glutamatergic transmission abnormality induced by an impaired NMDA receptor in the Thalamocortical pathway via the activation of a group III metabotropic glutamate receptor. Biomolecules 9(6), 234. https://doi.org/10.3390/biom9060234

  30. Neyer C, Herr D, Kohmann D, Budde T, Pape HC, Coulon P (2016) MGluR-mediated calcium signalling in the thalamic reticular nucleus. Cell Calcium 59:312–323. https://doi.org/10.1016/j.ceca.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  31. Doumazane E, Scholler P, Fabre L, Zwier JM, Trinquet E, Pin J-P, Rondard P (2013) Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc Natl Acad Sci 110:E1416–E1425. https://doi.org/10.1073/pnas.1215615110

    Article  CAS  PubMed  Google Scholar 

  32. Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin J-P (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25:66–77. https://doi.org/10.1096/fj.10-163147

    Article  CAS  PubMed  Google Scholar 

  33. Chavis P, Fagni L, Bockaert J, Lansman JB (1995) Modulation of calcium channels by metabotropic glutamate receptors in cerebellar granule cells. Neuropharmacology 34:929–937

    Article  CAS  Google Scholar 

  34. Kammermeier PJ, **ao B, Tu JC, Worley PF, Ikeda SR (2000) Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J Neurosci 20:7238–7245

    Article  CAS  Google Scholar 

  35. Swartz J, Bean P (1992) Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor. J Neurosci 12:4358–4371

    Article  CAS  Google Scholar 

  36. Sayer RJ, Schwindt PC, Crill WE (1992) Metabotropic glutamate receptor-mediated suppression of L-type calcium current in acutely isolated neocortical neurons. J Neurophysiol 68:833–842. https://doi.org/10.1152/jn.1992.68.3.833

    Article  CAS  PubMed  Google Scholar 

  37. Weon H, Kim TW, Youn D (2017) Postsynaptic N-type or P/Q-type calcium channels mediate long-term potentiation by group I metabotropic glutamate receptors in the trigeminal oralis. Life Sci 188:110–117. https://doi.org/10.1016/j.lfs.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  38. Choi S, Lovinger DM (1996) Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons. J Neurosci 16:36–45

    Article  CAS  Google Scholar 

  39. Shen K, Johnson SW (2013) Group I mGluRs evoke K-ATP current by intracellular Ca2+ mobilization in rat subthalamus neurons. J Pharmacol Exp Ther 345:139–150

    Article  CAS  Google Scholar 

  40. Crépel V, Aniksztejn L, Ben-ar Y, Hammond C (1994) Glutamate metabotropic receptors increase a Ca2+-activated nonspecific cationic current in CA1 hippocampal neurons. J Neurophysiol 72:1561–1569

    Article  Google Scholar 

  41. Bernal Correa AM, Soares Guimarães JD, dos Santos e Alhadas E, Kushmerick C (2017) Control of neuronal excitability by Group I metabotropic glutamate receptors. Biophys Rev 9:835–845. https://doi.org/10.1007/s12551-017-0301-7

    Article  CAS  Google Scholar 

  42. Partridge LD, Valenzuela CF (1999) Ca2+ store-dependent potentiation of Ca2+−activated non-selective cation channels in rat hippocampal neurones in vitro. J Physiol 521:617–627

    Article  CAS  Google Scholar 

  43. Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88

    Article  CAS  Google Scholar 

  44. Power JM, Sah P (2005) Intracellular calcium store filling by an L-type calcium current in the basolateral amygdala at subthreshold membrane potentials. J Physiol 562:439–453. https://doi.org/10.1113/jphysiol.2004.076711

    Article  CAS  PubMed  Google Scholar 

  45. Lalo U, Kostyk P (1998) Depletion of caffeine-sensitive calcium store results in diminution of ATP-induced metabotropic calcium responses in rat neocortical neurons. Neurophysiology 30:289–292

    Article  Google Scholar 

  46. Solovyova N, Verkhratsky A (2003) Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones. Pflugers Arch - Eur J Physiol 446:447–454. https://doi.org/10.1007/s00424-003-1094-z

    Article  CAS  Google Scholar 

  47. Verkhratsky A, Shmigol A (1996) Calcium induced calcium release in neurones. Cell Calcium 19:1–14. https://doi.org/10.1016/S0143-4160(96)90009-3

    Article  CAS  PubMed  Google Scholar 

  48. Verkhratsky A, Toescu E (2003) Endoplasmic reticulum ca(2+) homeostasis and neuronal death. J Cell Mol Med 7:351–361

    Article  CAS  Google Scholar 

  49. Pin J-P, Duvoisin R (1995) The metabotropic receptors glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  Google Scholar 

  50. Coulon P, Kanyshkova T, Broicher T, Munsch T, Wettschureck N, Seidenbecher T, Meuth SG, Offermanns S, Pape H-C, Budde T (2010) Activity modes in Thalamocortical relay neurons are modulated by Gq/G11 family G-proteins—serotonergic and glutamatergic signaling. Front Cell Neurosci 4:132. https://doi.org/10.3389/fncel.2010.00132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rankovic V, Ehling P, Coulon P, Landgraf P, Kreutz MR, Munsch T, Budde T (2010) Intracellular Ca2+ release-dependent inactivation of ca 2+ currents in thalamocortical relay neurons. Eur J Neurosci 31:439–449. https://doi.org/10.1111/j.1460-9568.2010.07081.x

    Article  PubMed  Google Scholar 

  52. Budde T, Meuth S, Pape H-C (2002) Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci 3:873–883. https://doi.org/10.1038/nrn959

    Article  CAS  PubMed  Google Scholar 

  53. Dierkes PW, Hochstrate P, Schlue WR (1996) Distribution and functional properties of glutamate receptors in the leech central nervous system. J Neurophysiol 75:2312–2321. https://doi.org/10.1152/jn.1996.75.6.2312

    Article  CAS  PubMed  Google Scholar 

  54. Lohr C, Deitmer JW (1997) Intracellular Ca2+ release mediated by metabotropic glutamate receptor activation in the leech giant glial cell. J Exp Biol 200:2565–2573

    CAS  PubMed  Google Scholar 

  55. Burrell BD, Li Q (2008) Co-induction of long-term potentiation and long-term depression at a central synapse in the leech. Neurobiol Learn Mem 90:275–279. https://doi.org/10.1016/j.nlm.2007.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Long MA, Landisman CE, Connors BW (2004) Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J Neurosci 24:341–349

    Article  CAS  Google Scholar 

  57. Kohmann D, Lüttjohann A, Seidenbecher T, Coulon P, Pape HC (2016) Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats. J Physiol 594:5695–5710. https://doi.org/10.1113/JP271811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504. https://doi.org/10.1007/s00441-006-0266-5

    Article  CAS  PubMed  Google Scholar 

  59. Liu T, Petrof I, Sherman SM (2015) Modulatory effects of activation of metabotropic glutamate receptors on GABAergic circuits in the mouse thalamus. J Neurophysiol 113:2646–2652. https://doi.org/10.1152/jn.01014.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sherman SM (2014) The function of metabotropic glutamate receptors in thalamus and cortex. Neuroscientist 20:136–149. https://doi.org/10.1177/1073858413478490

    Article  CAS  PubMed  Google Scholar 

  61. Govindaiah G, Venkitaramani DV, Chaki S, Cox CL (2012) Spatially distinct actions of metabotropic glutamate receptor activation in dorsal lateral geniculate nucleus. J Neurophysiol 107:1157–1163. https://doi.org/10.1152/jn.00401.2011

    Article  CAS  PubMed  Google Scholar 

  62. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26. https://doi.org/10.1098/rstb.2008.0093

    Article  CAS  PubMed  Google Scholar 

  63. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45. https://doi.org/10.1016/j.neuron.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  64. Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346. https://doi.org/10.1016/S0896-6273(03)00639-1

    Article  CAS  PubMed  Google Scholar 

  65. Cox CL, Sherman SM (1999) Glutamate inhibits thalamic reticular neurons. J Neurosci 19:6694–6699. https://doi.org/10.1523/JNEUROSCI.5723-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Coulon P, Herr D, Kanyshkova T, Meuth P, Budde T, Pape HC (2009) Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 46:333–346. https://doi.org/10.1016/j.ceca.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  67. Shmigol A, Verkhratsky A, Isenberg G (1995) Calcium-induced calcium release in rat sensory neurons. J Physiol 489:627–636

    Article  CAS  Google Scholar 

  68. Budde T, Coulon P, Pawlowski M, Meuth P, Kanyshkova T, Japes A, Meuth SG, Pape H-C (2008) Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane. Pflugers Arch - Eur J Physiol 456:1061–1073. https://doi.org/10.1007/s00424-008-0482-9

    Article  CAS  Google Scholar 

  69. Budde T, Sieg F, Braunewell KH, Gundelfinger ED, Pape HC (2000) Ca2+−induced Ca2+ release supports the relay mode of activity in thalamocortical cells. Neuron 26:483–492. https://doi.org/10.1016/S0896-6273(00)81180-0

    Article  CAS  PubMed  Google Scholar 

  70. Budde T, Munsch T, Pape H-CC (1998) Distribution of L-type calcium channels in rat thalamic neurons. Eur J Neurosci 10:586–597

    Article  CAS  Google Scholar 

  71. Kostyuk P, Pronchuk N, Savchenko A, Verkhratsky A (1993) Calcium currents in aged rat dorsal root ganglion neurones. J Physiol 461:467–483. https://doi.org/10.1113/jphysiol.1993.sp019523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kostyuk PG, Molokanova EA, Pronchuk NF, Savchenko AN, Verkhratsky AN (1992) Different action of ethosuximide on low- and high-threshold calcium currents in rat sensory neurons. Neuroscience 51:755–758. https://doi.org/10.1016/0306-4522(92)90515-4

    Article  CAS  PubMed  Google Scholar 

  73. Nilius B, Talavera K, Verkhratsky A (2006) T-type calcium channels: the never ending story. Cell Calcium 40:81–88. https://doi.org/10.1016/j.ceca.2006.04.011

    Article  CAS  PubMed  Google Scholar 

  74. Chamberland S, Zamora Moratalla A, Topolnik L (2019) Calcium extrusion mechanisms in dendrites of mouse hippocampal CA1 inhibitory interneurons. Cell Calcium 77:49–57. https://doi.org/10.1016/j.ceca.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  75. Doengi M, Hirnet D, Coulon P, Pape H-C, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca2+ signaling in develo** olfactory bulb astrocytes. Proc Natl Acad Sci 106:17570–17575. https://doi.org/10.1073/pnas.0809513106

    Article  PubMed  Google Scholar 

  76. Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I (2018) Crosslink between calcium and sodium signalling. Exp Physiol 103:157–169. https://doi.org/10.1113/EP086534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alexander GM, Godwin DW (2006) Unique presynaptic and postsynaptic roles of group II metabotropic glutamate receptors in the modulation of thalamic network activity. Neuroscience 141:501–513. https://doi.org/10.1016/j.neuroscience.2006.03.060

    Article  CAS  PubMed  Google Scholar 

  78. Coulon P, Wüsten H-J, Hochstrate P, Dierkes PW (2008) Swelling-activated chloride channels in leech Retzius neurons. J Exp Biol 211:630–641. https://doi.org/10.1242/jeb.008565

    Article  CAS  PubMed  Google Scholar 

  79. Cueni L, Canepari M, Luján R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Lüthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692. https://doi.org/10.1038/nn.2124

    Article  CAS  PubMed  Google Scholar 

  80. Gerard E, Hochstrate P, Dierkes PW, Coulon P (2012) Functional properties and cell type specific distribution of Ih channels in leech neurons. J Exp Biol 215:227–238. https://doi.org/10.1242/jeb.062836

    Article  CAS  PubMed  Google Scholar 

  81. Zobeiri M, Chaudhary R, Datunashvili M, Heuermann RJ, Lüttjohann A, Narayanan V, Balfanz S, Meuth P, Chetkovich DM, Pape HC, Baumann A, van Luijtelaar G, Budde T (2018) Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels. Brain Struct Funct 223:1537–1564. https://doi.org/10.1007/s00429-017-1559-z

    Article  CAS  PubMed  Google Scholar 

  82. Cerina M, Szkudlarek HJ, Coulon P, Meuth P, Kanyshkova T, Nguyen XV, Göbel K, Seidenbecher T, Meuth SG, Pape HC, Budde T (2015) Thalamic Kv7 channels: pharmacological properties and activity control during noxious signal processing. Br J Pharmacol 172:3126–3140. https://doi.org/10.1111/bph.13113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jüngling K, Liu X, Lesting J, Coulon P, Sosulina L, Reinscheid RK, Pape HC (2012) Activation of neuropeptide S-expressing neurons in the locus coeruleus by corticotropin-releasing factor. J Physiol 590:3701–3717. https://doi.org/10.1113/jphysiol.2011.226423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Broicher T, Wettschureck N, Munsch T, Coulon P, Meuth SG, Kanyshkova T, Seidenbecher T, Offermanns S, Pape HC, Budde T (2008) Muscarinic ACh receptor-mediated control of thalamic activity via Gq/G11-family G-proteins. Pflugers Arch - Eur J Physiol 456:1049–1060. https://doi.org/10.1007/s00424-008-0473-x

    Article  CAS  Google Scholar 

  85. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+−activated cation channel TRPM4. J Biol Chem 278:30813–30820. https://doi.org/10.1074/jbc.M305127200

    Article  CAS  PubMed  Google Scholar 

  86. Angstadt JD (1999) Persistent inward currents in cultured Retzius cells of the medicinal leech. J Comp Physiol: A Sens Neural Behav Physiol 184:49–61. https://doi.org/10.1007/s003590050305

    Article  CAS  Google Scholar 

  87. Snutch TP, Cain SM (2010) Contributions of T-type calcium channel isoforms to neuronal firing. Channels (Austin) 4:475–482. https://doi.org/10.4161/chan.4.6.14106

    Article  CAS  Google Scholar 

  88. Broicher T, Kanyshkova T, Meuth P, Pape HC, Budde T (2008) Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39:384–399. https://doi.org/10.1016/j.mcn.2008.07.012

    Article  CAS  PubMed  Google Scholar 

  89. Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143. https://doi.org/10.1016/j.coph.2014.12.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Coulon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Coulon, P. (2021). Electrophysiological and Calcium Imaging Approaches to Study Metabotropic Glutamate Receptors. In: Olive, M.F., Burrows, B.T., Leyrer-Jackson, J.M. (eds) Metabotropic Glutamate Receptor Technologies. Neuromethods, vol 164. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1107-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1107-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1106-7

  • Online ISBN: 978-1-0716-1107-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation