Technologies for Screening of mGlu Receptor Allosteric Modulators

  • Protocol
  • First Online:
Metabotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 164))

  • 311 Accesses

Abstract

In recent years, modulation of metabotropic glutamate (mGlu) receptors has been explored in efforts for development of therapeutics, particularly for central nervous system disorders. Positive and negative allosteric modulators can engender compounds with the ability to selectively modulate mGlu receptor signaling pathways with therapeutically beneficial results. There are many assays available for the screening and characterization of mGlu receptor modulators, but a number of considerations should be addressed when selecting the appropriate assay. These can include mode of pharmacology, desired throughput, methodology for monitoring receptor activity, and assay kinetics. In this chapter, we discuss assays currently being used to identify and characterize allosteric modulators of mGlu receptors, highlight examples in the literature of these assays being successfully implemented, and provide detailed methods for executing these assays in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  3. Nicoletti F et al (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60(7–8):1017–1041

    Article  CAS  PubMed  Google Scholar 

  4. Gregory KJ et al (2012) Investigating metabotropic glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching structure-function studies and structure-activity relationships. Mol Pharmacol 82(5):860–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Golubeva AV et al (2016) Metabotropic glutamate receptors in central nervous system diseases. Curr Drug Targets 17(5):538–616

    Article  CAS  PubMed  Google Scholar 

  6. Christopoulos A (2014) Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol 86(5):463–478

    Article  PubMed  CAS  Google Scholar 

  7. Wu H et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344(6179):58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dore AS et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511(7511):557–562

    Article  CAS  PubMed  Google Scholar 

  9. Pin JP, Bettler B (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature 540(7631):60–68

    Article  CAS  PubMed  Google Scholar 

  10. Lindsley CW et al (2016) Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev 116(11):6707–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nickols HH, Conn PJ (2014) Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 61:55–71

    Article  PubMed  CAS  Google Scholar 

  12. Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8(1):41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54(2):323–374

    Article  CAS  PubMed  Google Scholar 

  14. Sheffler DJ et al (2011) Recent progress in the synthesis and characterization of group II metabotropic glutamate receptor allosteric modulators. ACS Chem Neurosci 2(8):382–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gentry PR, Sexton PM, Christopoulos A (2015) Novel allosteric modulators of G protein-coupled receptors. J Biol Chem 290(32):19478–19488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Conn PJ et al (2014) Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 13(9):692–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klein MT, Vinson PN, Niswender CM (2013) Approaches for probing allosteric interactions at 7 transmembrane spanning receptors. Prog Mol Biol Transl Sci 115:1–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coward P et al (1999) Chimeric G proteins allow a high-throughput signaling assay of Gi-coupled receptors. Anal Biochem 270(2):242–248

    Article  CAS  PubMed  Google Scholar 

  19. Kostenis E, Waelbroeck M, Milligan G (2005) Techniques: promiscuous Galpha proteins in basic research and drug discovery. Trends Pharmacol Sci 26(11):595–602

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez AL et al (2010) Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol 78(6):1105–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weaver CD et al (2004) A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J Biomol Screen 9(8):671–677

    Article  CAS  PubMed  Google Scholar 

  22. Niswender CM et al (2008) A novel assay of Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of the group III metabotropic glutamate receptors. Mol Pharmacol 73(4):1213–1224

    Article  CAS  PubMed  Google Scholar 

  23. Weaver CD (2018) Thallium flux assay for measuring the activity of monovalent cation channels and transporters. Methods Mol Biol 1684:105–114

    Article  CAS  PubMed  Google Scholar 

  24. Dhanya RP et al (2014) Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence. J Med Chem 57(10):4154–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Felts AS et al (2017) Discovery of N-(5-Fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (VU0424238): a novel negative allosteric modulator of metabotropic glutamate receptor subtype 5 selected for clinical evaluation. J Med Chem 60(12):5072–5085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Felts AS et al (2013) Discovery of VU0409106: a negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 23(21):5779–5785

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez AL et al (2005) A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol Pharmacol 68(6):1793–1802

    Article  CAS  PubMed  Google Scholar 

  28. Cho HP et al (2014) Chemical modulation of mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenics. ACS Chem Biol 9(10):2334–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garcia-Barrantes PM et al (2015) Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 1: SAR of modifications to the central aryl core. Bioorg Med Chem Lett 25(22):5107–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Barrantes PM et al (2016) Lead optimization of the VU0486321 series of mGlu(1) PAMs. Part 2: SAR of alternative 3-methyl heterocycles and progress towards an in vivo tool. Bioorg Med Chem Lett 26(3):751–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Barrantes PM et al (2016) Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 3. Engineering plasma stability by discovery and optimization of isoindolinone analogs. Bioorg Med Chem Lett 26(8):1869–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garcia-Barrantes PM et al (2015) Development of novel, CNS penetrant positive allosteric modulators for the metabotropic glutamate receptor subtype 1 (mGlu1), based on an N-(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold, that potentiate wild type and mutant mGlu1 receptors found in schizophrenics. J Med Chem 58(20):7959–7971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Barrantes PM et al (2016) Re-exploration of the mGlu(1) PAM Ro 07-11401 scaffold: discovery of analogs with improved CNS penetration despite steep SAR. Bioorg Med Chem Lett 26(9):2289–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niswender CM et al (2016) Development and antiparkinsonian activity of VU0418506, a selective positive allosteric modulator of metabotropic glutamate receptor 4 Homomers without activity at mGlu2/4 Heteromers. ACS Chem Neurosci 7(9):1201–1211

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X et al (2017) Synthesis and preliminary studies of a novel negative allosteric modulator, 7-((2,5-Dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[11C]methoxyphenyl) quinoline-2-carboxamide, for imaging of metabotropic glutamate receptor 2. ACS Chem Neurosci 8(9):1937–1948

    Article  CAS  PubMed  Google Scholar 

  36. Monn JA et al (2015) Synthesis and pharmacological characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2, 6-dicarboxylic acid (LY2812223), a highly potent, functionally selective mGlu2 receptor agonist. J Med Chem 58(18):7526–7548

    Article  CAS  PubMed  Google Scholar 

  37. Felder CC et al (2017) Translational pharmacology of the metabotropic glutamate 2 receptor-preferring agonist LY2812223 in the animal and human brain. J Pharmacol Exp Ther 361(1):190–197

    Article  CAS  PubMed  Google Scholar 

  38. Higgins MA et al (2017) Triazolopyridine ethers as potent, orally active mGlu2 positive allosteric modulators for treating schizophrenia. Bioorg Med Chem 25(2):496–513

    Article  CAS  PubMed  Google Scholar 

  39. Nickols HH et al (2016) VU0477573: partial negative allosteric modulator of the subtype 5 metabotropic glutamate receptor with in vivo efficacy. J Pharmacol Exp Ther 356(1):123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Porter RH et al (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 315(2):711–721

    Article  CAS  PubMed  Google Scholar 

  41. Campbell UC et al (2004) The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology 175(3):310–318

    Article  CAS  PubMed  Google Scholar 

  42. Abou Farha K, Bruggeman R, Balje-Volkers C (2014) Metabotropic glutamate receptor 5 negative modulation in phase I clinical trial: potential impact of circadian rhythm on the neuropsychiatric adverse reactions-do hallucinations matter? ISRN Psychiatry 2014:652750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from rettsyndrome.org, Autism Speaks, NIMH R21 MH102548, R01 MH113543, and CDMRP grant W81XWH-17-1-0266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen M. Niswender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodriguez, A.L., Niswender, C.M. (2021). Technologies for Screening of mGlu Receptor Allosteric Modulators. In: Olive, M.F., Burrows, B.T., Leyrer-Jackson, J.M. (eds) Metabotropic Glutamate Receptor Technologies. Neuromethods, vol 164. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1107-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1107-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1106-7

  • Online ISBN: 978-1-0716-1107-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation