Intravital Microscopy: A Tool to Investigate the Toxicity in the Immune System, Vessel Rheology, and Xenobiotic Distribution

  • Protocol
  • First Online:
Toxicity Assessment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2240))

  • 821 Accesses

Abstract

Intravital microscopy (IVM) is an essential experimental approach for evaluating, in real time, cell interactions in the blood and rheological parameters in the microcirculation of the living animals. Different tissues are surgically exposed to the visualization of the microvascular network in optical microscopies connected to video cameras and image software. By evaluating in situ microcirculatory network, IVM allows the visualization and quantification of physiological and pathological processes in the blood or in the adjacent tissues considering the whole system. Therefore, IVM has been used to evaluate the effects and mechanisms of actions in the microvascular network caused by pharmacological or toxic chemical agents. In this chapter, different experimental approaches are described to study the toxic effects and mechanisms of xenobiotics in the microcirculatory network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Secklehner J, Lo Celso C, Carlin LM (2017) Intravital microscopy in historic and contemporary immunology. Immunol Cell Biol 95:506–513

    Article  Google Scholar 

  2. Hughes EL, Gavins FNE (2010) Troubleshooting methods: using intravital microscopy in drug research. J Pharmacol Toxicol Methods 61:102–112

    Article  CAS  Google Scholar 

  3. Burkovskiy I, Lehmann C, Jiang C, Zhou J (2016) Utilization of 3D printing for an intravital microscopy platform to study the intestinal microcirculation. J Microsc 264:224–226

    Article  CAS  Google Scholar 

  4. Dunn KW, Ryan JC (2017) Using quantitative intravital multiphoton microscopy to dissect hepatic transport in rats. Methods 128:40–51

    Article  CAS  Google Scholar 

  5. Miller MA, Weissleder R (2017) Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv Drug Deliv Rev 113:61–86

    Article  CAS  Google Scholar 

  6. Reif R, Ghallab A, Beattie L, Günther G, Kuepfer L, Kaye PM, Hengstler JG (2017) In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice. Arch Toxicol 91:1335–1352

    Article  CAS  Google Scholar 

  7. Galanzha EI, Tuchin VV, Zharov VP (2007) Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening. World J Gastroenterol 13:192–218

    Article  Google Scholar 

  8. Laschke MW, Menger MD (2016) The dorsal skinfold chamber: a versatile tool for preclinical research in tissue engineering and regenerative medicine. Eur Cell Mater 32:202–215

    Article  CAS  Google Scholar 

  9. Coles JA, Stewart-Hutchinson PJ, Myburgh E, Brewer JM (2017) The mouse cortical meninges are the site of immune responses to many different pathogens, and are accessible to intravital imaging. Methods 127:53–61

    Article  CAS  Google Scholar 

  10. Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK (1996) Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol 149:59–71

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Uchiyama MK, Deda DK, Rodrigues SF, Drewes CC, Bolonheis SM, Kiyohara PK, Toledo SP, Colli W, Araki K, Farsky SH (2014) In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system. Toxicol Sci 142:497–507

    Article  CAS  Google Scholar 

  12. Rodrigues SF, Fiel LA, Shimada AL, Pereira NR, Guterres SS, Pohlmann AR, Farsky SH (2016) Lipid-Core Nanocapsules act as a drug shuttle through the blood brain barrier and reduce glioblastoma after intravenous or Oral administration. J Biomed Nanotechnol 12:986–1000

    Article  CAS  Google Scholar 

  13. Vanheule E, Geerts AM, Van Huysse J, Schelfhout D, Praet M, Van Vlierberghe H, De Vos M, Colle I (2008) An intravital microscopic study of the hepatic microcirculation in cirrhotic mice models: relationship between fibrosis and angiogenesis. Int J Exp Pathol 89:419–432

    Article  Google Scholar 

  14. Sleigha J, Harveyb M, Vossa L, Dennyc B (2014) Ketamine—more mechanisms of action than just NMDA blockade. TRENDS Anesthesia and Critical Care 4:76–81

    Article  Google Scholar 

  15. Maggi CA, Meli A (1986) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: general considerations. Experientia 42:109–114

    Article  CAS  Google Scholar 

  16. Hara K, Harris RA (2002) The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth Analg 94:313–318

    CAS  PubMed  Google Scholar 

  17. Vinegoni C, Aguirre AD, Lee S, Weissleder R (2015) Imaging the beating heart in the mouse using intravital microscopy techniques. Nat Protoc 10:1802–1819

    Article  CAS  Google Scholar 

  18. Drewes CC, Dias RY, Hebeda CB, Simons SM, Barreto SA, Ferreira JM Jr, Chudzinski-Tavassi AM, Farsky SH (2012) Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. Toxicon 60:333–340

    Article  CAS  Google Scholar 

  19. Pereira NRC, Loiola RA, Rodrigues SF, Oliveira CP, Büttenbender SL, Guterres SS, Pohlmann AR, Farsky SH (2016) Mechanisms of the effectiveness of poly(ε-caprolactone) lipid-core nanocapsules loaded with methotrexate on glioblastoma multiforme treatment. J Biomed Nanotechnol 12:986–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Helena Poliselli Farsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hebeda, C.B., Barioni, É.D., Farsky, S.H.P. (2021). Intravital Microscopy: A Tool to Investigate the Toxicity in the Immune System, Vessel Rheology, and Xenobiotic Distribution. In: Palmeira, C.M.M., de Oliveira, D.P., Dorta, D.J. (eds) Toxicity Assessment. Methods in Molecular Biology, vol 2240. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1091-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1091-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1090-9

  • Online ISBN: 978-1-0716-1091-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation