Single Base Editing Using Cytidine Deaminase to Change Grain Size and Seed Coat Color in Rice

  • Protocol
  • First Online:
Rice Genome Engineering and Gene Editing

Abstract

The fast-moving CRISPR technology has allowed plant scientists to manipulate plant genomes in a targeted manner. So far, most of the applications were focused on gene knocking out by creating indels. However, more precise genome editing tools are demanded to assist the introduction of functional single nucleotide polymorphisms (SNPs) in breeding programs. The CRISPR base editing tools were developed to meet this need. In this chapter, we present a cytidine deaminase base editing method for editing the point mutations that control the grain size and seed coat color in rice.

Electronic Supplementary Material:

The online version of this chapter (https://doi.org/10.1007/978-1-0716-1068-8_9) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. **ek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  2. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  3. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:1–12

    Article  Google Scholar 

  4. Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE, Quick WP, Bandyopadhyay A (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36:1–13

    Article  Google Scholar 

  5. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    Article  CAS  Google Scholar 

  6. Miki D, Zhang W, Zeng W, Feng Z, Zhu JK (2018) CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9:1967

    Article  Google Scholar 

  7. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  Google Scholar 

  8. Komor AC, Badran AH (2017) Editing the genome without double-stranded DNA breaks. ACS Chem Biol 13:383–388

    Article  Google Scholar 

  9. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  Google Scholar 

  10. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu J, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  Google Scholar 

  11. Hua K, Tao X, Yuan F, Wang D, Zhu JK (2018) Precise a·T to G·C base editing in the rice genome. Mol Plant 11:627–630

    Article  CAS  Google Scholar 

  12. Kim JS (2018) Precision genome engineering through adenine and cytosine base editing. Nat Plants 4:148–151

    Article  CAS  Google Scholar 

  13. Li H, Qin R, Liu X, Liao S, Xu R, Yang J, Wei P (2019) CRISPR/Cas9-mediated adenine base editing in rice genome. Rice Sci 26:125–128

    Article  Google Scholar 

  14. Schellenberger V, Wang CW, Geething NC, Spink BJ, Campbell A, To W, Scholle MD, Yin Y, Yao Y, Bogin O, Cleland JL, Silverman J, Stemmer WP (2009) A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol 27:1186–1190

    Article  CAS  Google Scholar 

  15. Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R (2017) Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes. Front Plant Sci 8:1461

    Article  Google Scholar 

  16. Huq A, Akter S, Nou S, Kim HT, Jung YJ, Kang KK (2016) Identification of functional SNPs in genes and their effects on plant phenotypes. J Plant Biotechnol 43:1–11

    Article  Google Scholar 

  17. Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y (2014) SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J 77:547–557

    Article  CAS  Google Scholar 

  18. **a X, **ao-Bo Z, Yong-Feng S, Hui-Mei W, Bao-Hua F, **ao-Hong L, Qi-Na L-XHS, Dan G, Yan H, Jian-Li W (2016) A point mutation in an F-box domain-containing protein is responsible for brown hull phenotype in rice. Rice Sci 23:1–8

    Article  CAS  Google Scholar 

  19. Fang N, Xu R, Huang L, Zhang B, Duan P, Li N, Luo Y, Li Y (2016) Small grain 11 controls grain size, grain number and grain yield in rice. Rice 9:64

    Article  Google Scholar 

  20. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge International Rice Research Institute for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tra, M.V.T., Yin, X., Bajal, I., Balahadia, C.P., Quick, W.P., Bandyopadhyay, A. (2021). Single Base Editing Using Cytidine Deaminase to Change Grain Size and Seed Coat Color in Rice. In: Bandyopadhyay, A., Thilmony, R. (eds) Rice Genome Engineering and Gene Editing. Methods in Molecular Biology, vol 2238. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1068-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1068-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1067-1

  • Online ISBN: 978-1-0716-1068-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation