Protein Quantification Using the “Rapid Western Blot” Approach

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2228))

Abstract

For the quantification of certain proteins of interest within a complex sample, Western blot analysis is the most widely used method. It enables detection of a target protein based on the use of specific antibodies. However, the whole procedure is often very time-consuming. Nevertheless, with the development of fast blotting systems and further development of immunostaining methods, a reduction of the processing time can be achieved. Major challenges for the reliable protein quantification by Western blotting are adequate data normalization and stable protein detection. Usually, normalization of the target protein signal is performed based on housekee** proteins (e.g., glyceraldehyde 3-phosphate dehydrogenase, ß-actin) with the assumption that those proteins are expressed constitutively at the same level across experiments. However, several studies have already shown that this is not always the case making this approach suboptimal. Another strategy uses total protein normalization where the abundance of the target protein is related to the total protein amount in each lane. This approach is independent of a single loading control, and precision of quantification and reliability is increased. For Western blotting several detection methods are available, e.g., colorimetric, chemiluminescent, radioactive, fluorescent detection. Conventional colorimetric staining tends to suffer from low sensitivity, limited dynamic range, and low reproducibility. Chemiluminescence-based methods are straightforward, but the detected signal does not linearly correlate to protein abundance (from protein amounts >5μg) and have a relatively narrow dynamic range. Radioactivity is harmful to health. To overcome these limitations, stain-free methods were developed allowing the combination of fluorescent standards and a stain-free fluorescence-based visualization of total protein in gels and after transfer to the membrane. Here, we present a rapid Western blot protocol, which combines fast blotting using the iBlot system and fast immunostaining utilizing ReadyTector® all-in-one solution with the Smart Protein Layers (SPL) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bass JJ, Wilkinson DJ, Rankin D et al (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27(1):4–25. https://doi.org/10.1111/sms.12702

    Article  CAS  PubMed  Google Scholar 

  2. Ni D, Xu P, Gallagher S (2017) Immunoblotting and Immunodetection. Curr Protoc Protein Sci 88:10.10.11–10.10.37. https://doi.org/10.1002/cpps.32

    Article  CAS  Google Scholar 

  3. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354. https://doi.org/10.1073/pnas.76.9.4350

    Article  CAS  PubMed  Google Scholar 

  4. Sundaram P (2018) Protein stains and applications. Methods Mol Biol 1853:1–14. https://doi.org/10.1007/978-1-4939-8745-0_1

    Article  CAS  PubMed  Google Scholar 

  5. MacPhee DJ (2010) Methodological considerations for improving Western blot analysis. J Pharmacol Toxicol Methods 61(2):171–177. https://doi.org/10.1016/j.vascn.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  6. Fradelizi J, Friederich E, Beckerle MC et al (1999) Quantitative measurement of proteins by western blotting with Cy5-coupled secondary antibodies. Biotechniques 26(3):484–486; 488, 490 passim.

    CAS  PubMed  Google Scholar 

  7. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate—polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203. https://doi.org/10.1016/0003-2697(81)90281-5

    Article  CAS  PubMed  Google Scholar 

  8. Kricka LJ, Thorpe GH (1986) Photographic detection of chemiluminescent and bioluminescent reactions. Methods Enzymol 133:404–420. https://doi.org/10.1016/0076-6879(86)33082-9

    Article  CAS  PubMed  Google Scholar 

  9. Kurien BT, Scofield RH (2006) Western blotting. Methods 38(4):283–293. https://doi.org/10.1016/j.ymeth.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  10. Taylor SC, Posch A (2014) The design of a quantitative western blot experiment. Biomed Res Int 2014:361,590. https://doi.org/10.1155/2014/361590

    Article  CAS  Google Scholar 

  11. Welinder C, Ekblad L (2011) Coomassie staining as loading control in Western blot analysis. J Proteome Res 10(3):1416–1419. https://doi.org/10.1021/pr1011476

    Article  CAS  PubMed  Google Scholar 

  12. Ranganathan V, De PK (1996) Western blot of proteins from Coomassie-stained polyacrylamide gels. Anal Biochem 234(1):102–104. https://doi.org/10.1006/abio.1996.0057

    Article  CAS  PubMed  Google Scholar 

  13. Litovchick L (2020) Staining the blot for total protein with ponceau S. Cold Spring Harb Protoc 2020(3):098459. https://doi.org/10.1101/pdb.prot098459

    Article  PubMed  Google Scholar 

  14. Wang JL, Zhao L, Li MQ et al (2020) A sensitive and reversible staining of proteins on blot membranes. Anal Biochem 592:113,579. https://doi.org/10.1016/j.ab.2020.113579

    Article  CAS  Google Scholar 

  15. Steinberger B, Brem G, Mayrhofer C (2015) Evaluation of SYPRO ruby total protein stain for the normalization of two-dimensional Western blots. Anal Biochem 476:17–19. https://doi.org/10.1016/j.ab.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  16. Goldman A, Harper S, Speicher DW (2016) Detection of proteins on blot membranes. Curr Protoc Protein Sci 86:10.18.11. https://doi.org/10.1002/cpps.15

    Article  Google Scholar 

  17. Ferguson RE, Carroll HP, Harris A et al (2005) Housekee** proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5(2):566–571. https://doi.org/10.1002/pmic.200400941

    Article  CAS  PubMed  Google Scholar 

  18. Thellin O, Zorzi W, Lakaye B et al (1999) Housekee** genes as internal standards: use and limits. J Biotechnol 75(2–3):291–295. https://doi.org/10.1016/s0168-1656(99)00163-7

    Article  CAS  PubMed  Google Scholar 

  19. Colella AD, Chegenii N, Tea MN et al (2012) Comparison of stain-free gels with traditional immunoblot loading control methodology. Anal Biochem 430(2):108–110. https://doi.org/10.1016/j.ab.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  20. Gürtler A, Kunz N, Gomolka M et al (2013) Stain-free technology as a normalization tool in Western blot analysis. Anal Biochem 433(2):105–111. https://doi.org/10.1016/j.ab.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  21. Gilda JE, Gomes AV (2013) Stain-free total protein staining is a superior loading control to β-actin for Western blots. Anal Biochem 440(2):186–188. https://doi.org/10.1016/j.ab.2013.05.027

    Article  CAS  PubMed  Google Scholar 

  22. Gilda JE, Gomes AV (2015) Western blotting using in-gel protein labeling as a normalization control: stain-free technology. Methods Mol Biol 1295:381–391. https://doi.org/10.1007/978-1-4939-2550-6_27

    Article  CAS  PubMed  Google Scholar 

  23. Faden F, Eschen-Lippold L, Dissmeyer N (2016) Normalized quantitative Western blotting based on standardized fluorescent labeling. Methods Mol Biol 1450:247–258. https://doi.org/10.1007/978-1-4939-3759-2_20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A part of this study was funded by P.U.R.E. (Protein Research Unit Ruhr within Europe) and ProDi (Center for protein diagnostics), Ministry of Innovation, Science and Research of North-Rhine Westphalia, Germany, and by the H2020 project NISCI, (GA no. 681094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Marcus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barkovits, K., Pfeiffer, K., Eggers, B., Marcus, K. (2021). Protein Quantification Using the “Rapid Western Blot” Approach. In: Marcus, K., Eisenacher, M., Sitek, B. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 2228. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1024-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1024-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1023-7

  • Online ISBN: 978-1-0716-1024-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation