Cercal System

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 50 Accesses

Definition

The cercal system is a mechanosensory system in orthopteran insects, which mediates the detection, localization, and identification of air currents surrounding the animals. The receptor organ for this modality is a pair of antenna-like appendages called cerci at the rear of the abdomen, covered with mechanosensory hairs like the bristles on a bottlebrush (Fig. 1). Air currents in the animal’s immediate environment move these hairs and, thereby, activate the receptor neurons at the base of the hairs. The cercal system is implemented around an internal representation of stimulus direction and dynamics that demonstrates the essential features of neural maps found in more complex systems, including mammalian visual and auditory systems. Over the last several decades, this system of the cricket has been used as a simple “model system” for investigations of development, mechanoreceptor biomechanics, neural maps, and neural coding (Jacobs et al. 2008).

Cercal System, Fig. 1
figure 444 figure 444

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aldworth ZN, Dimitrov AG, Cummins GI, Gedeon T, Miller JP (2011) Temporal encoding in a nervous system. PLoS Comput Biol 7(5):e1002041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba Y, Shimozawa T (1997) Diversity of motor responses initiated by a wind stimulus in the freely moving cricket, Gryllus bimaculatus. Zool Sci 14:587–594

    Article  Google Scholar 

  • Bacon JP, Murphey RK (1984) Receptive fields of cricket are related by their dendritic structure. J Physiol (Lond) 352:601–623

    Article  CAS  Google Scholar 

  • Boyan GS, Ashman S, Ball EE (1986) Initiation and modulation of flight by a single giant interneuron in the cercal system of the locust. Naturwissenschaften 73:272–274

    Article  Google Scholar 

  • Camhi JM (1980) The escape system of the cockroach. Sci Am 243:144–157

    Article  Google Scholar 

  • Casas J, Dangles O (2010) Physical ecology of fluid flow sensing in arthropods. Annu Rev Entomol 55:505–520

    Article  CAS  PubMed  Google Scholar 

  • Dupuy F, Steinmann T, Pierre D, Christidès J-P, Cummins G, Lazzari C, Miller JP, Casas C (2012) Responses of cricket cercal interneurons to realistic naturalistic stimuli in the field. J Exp Biol 215:2382–2389

    Article  PubMed  PubMed Central  Google Scholar 

  • Heusslein R, Gnatzy W (1987) Central projections of campaniform sensilla on the cerci of crickets and cockroaches. Cell Tissue Res 247:591–598

    Article  Google Scholar 

  • Hoyle G (1958) The leap of the grasshopper. Sci Am 198:30–35

    Article  Google Scholar 

  • Jacobs GA, Miller JP, Murphey RK (1986) Cellular mechanisms underlying directional sensitivity of an identified sensory interneuron. J Neurosci 6:2298–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs GA, Miller JP, Aldworth Z (2008) Computational mechanisms of mechanosensory processing in the cricket. J Exp Biol 211:1819–1828

    Article  PubMed  Google Scholar 

  • Jacobs GA, Theunissen F (1996) Functional organization of a neural map in the cricket cercal sensory system. J Neurosci 16:769–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs GA, Theunissen F (2000) Extraction of sensory parameters from a neural map by primary sensory interneurons. J Neurosci 20:2934–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure, vol 2. Plenum Press, New York, pp 477–516

    Chapter  Google Scholar 

  • Landolfa M, Jacobs GA (1995) Direction sensitivity of the filiform hair population of the cricket cercal system. J Comp Physiol A 177:759–766

    Google Scholar 

  • Landolfa M, Miller JP (1995) Stimulus/response properties of cricket cercal filiform hair receptors. J Comp Physiol A 177:749–757

    Google Scholar 

  • Miller JP, Krueger S, Heys J, Gedeon T (2011) Quantitative characterization of the filiform Mechanosensory hair Array on the cricket cercus. PLoS One 6(11):e27873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JP, Theunissen FE, Jacobs GA (1991) Representation of sensory information in the cricket cercal sensory system I. Response properties of the primary interneurons. J Neurophysiol 66:1680–1689

    Article  CAS  PubMed  Google Scholar 

  • Mulder-Rosi J, Cummins GI, Miller JP (2010) The cricket cercal system implements delay-line processing. J Neurophysiol 103:1823–1832

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphey RK (1985) A second cricket cercal sensory system: bristle hairs and the interneurons they activate. J Comp Physiol A 156:357–367

    Article  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Miller JP (2006) Visualization of ensemble activity patterns of Mechanosensory afferents in the cricket cercal sensory system with calcium imaging. J Neurobiol 66:293–307

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (1999) Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron. Neurosci Lett 275:61–64

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2000) Spike-dependent calcium influx in dendrites of the cricket giant interneuron. J Neurobiol 44:45–56

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2001) Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. J Neurobiol 46:301–313

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2002a) Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons. J Neurobiol 50:234–244

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2002b) Direction of action potential propagation regulates calcium increases in distal dendrites of the cricket giant interneurons. J Neurobiol 53:44–56

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2004) Directional sensitivity of dendritic calcium responses to wind stimuli in cricket giant interneurons. Neurosci Lett 358:185–188

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Oka K (2008) Dendritic design implements algorithms for extraction of sensory information. J Neurosci 28:4592–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa H, Oka K (2015) Direction-specific adaptation in neuronal and behavioral responses of an insect mechanosensory system. J Neurosci 35:11644–11655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa H, Mitani R (2015) Spatial dynamics of action potentials estimated by dendritic Ca2+ signals in insect projection neurons. BBRC 467:185–190

    CAS  PubMed  Google Scholar 

  • Palka J, Levine R, Schubiger M (1977) The cercus-to-giant interneuron system of crickets. I Some aspects of the sensory cells. J Comp Physiol A 119:267–283

    Article  Google Scholar 

  • Paydar S, Doan CA, Jacobs GA (1999) Neural map** of direction and frequency in the cricket cercal sensory system. J Neurosci 19:1771–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi DS, Murphey RK (1983) The equilibrium detecting system of the cricket: physiology and morphology of an identified interneuron. J Comp Physiol A 150:141–152

    Article  Google Scholar 

  • Shimozawa T, Kanou M (1984) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155:495–505

    Article  Google Scholar 

  • Theunissen FE, Miller JP (1991) Representation of sensory information in the cricket cercal sensory system II. Information theoretic calculation of system accuracy and optimal tuning curve widths of four primary interneurons. J Neurophysiol 66:1690–1703

    Article  CAS  PubMed  Google Scholar 

  • Theunissen FE, Roddey JC, Stufflebeam S, Clague H, Miller JP (1996) Information theoretical analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. J Neurophysiol 75:1345–1364

    Article  CAS  PubMed  Google Scholar 

  • Troyer TW, Levin JE, Jacobs GA (1994) Construction and analysis of a data base representing a neural map. Microsc Res Tech 29:329–343

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Ogawa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ogawa, H., Miller, J.P. (2022). Cercal System. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1006-0_322

Download citation

Publish with us

Policies and ethics

Navigation