Internally Coupled Ears (ICE): Biophysical Consequences and Underlying Mechanisms

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 130 Accesses

Synonyms

Internally coupled ears; Pressure-difference receiver; Pressure-gradient receiver

Though the notions of pressure-gradient receiver and pressure-difference receiver have been used widely (van Hemmen et al. 2016, Sect. 2), they are not really synonymous with the “internally coupled ears” or for short ICE that we analyze here because, in contrast to ICE, both are ill-defined or even wrong. The pressure difference between the two eardrums never gives rise to a gradient since, for the terrestrial vertebrates under consideration, the interaural distance L is of the order of cm. A gradient means taking a derivative and, hence, a limit L → 0 whereas in reality L is fixed and bound to remain finite >0. Even though L is of the order of a few, usually <2, cm and hence ≪ λ, with λ as a wavelength relevant to sound localization, a finite Lis essential to giving a finite time delay for all nonzero directions. The time delay between left and right eardrums is a cue, though not the only...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acheson DJ (1990) Elementary fluid dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Christensen-Dalsgaard J (2005) Directional hearing in non-mammalian tetrapods. In: Popper AN, Fay RR (eds) Sound source localization. Springer handbook in auditory research, vol 25. Springer, New York, pp 67–123

    Chapter  Google Scholar 

  • Christensen-Dalsgaard J, Elepfandt A (1995) Biophysics of underwater hearing in the clawed frog, Xenopus laevis. J Comp Physiol A 176(3):317–324

    Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2008) Acoustical coupling of lizard eardrums. J Assoc Res Otolaryngol 9:407–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2014) The malleable middle ear: an underappreciated player in the evolution of hearing in vertebrates. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer handbook in auditory research, vol 49. Springer, New York, pp 157–191

    Chapter  Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2019) Sound localization by the internally coupled ears of lizards: from biophysics to biorobotics. J Acoust Soc Am 146:4718–1426

    Article  PubMed  Google Scholar 

  • Dirac PAM (1958) Quantum mechanics, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Engel K-J, Nagel R (2006) A short course on operator semigroups. Springer, New York

    Google Scholar 

  • Friedel P, Young BA, van Hemmen JL (2008) Auditory localization of ground-borne vibrations in snakes. Phys Rev Lett 100:048701

    Article  PubMed  CAS  Google Scholar 

  • Heider DT, van Hemmen JL (2020) Geometric perturbation theory and Acoustic Boundary Condition Dynamics. Physica D 405:132364

    Google Scholar 

  • Konishi M (1993) Listening with two ears. Sci Am 268(4):66–73

    Article  CAS  PubMed  Google Scholar 

  • Köppl C, Carr CE (2008) Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biol Cybern 98:541–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Manley GA (1972) The middle ear of the tokay gecko. J Comp Physiol 81:239–250

    Article  Google Scholar 

  • Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci U S A 97(22):11736–11743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MJ (2016) Internally coupled ears in living mammals. Biol Cybern 110:345–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller R, Scheer U (1970) Klangspektrographische Untersuchung der Lautäusserung beim Krallenfrosch, Xenopus laevis (Sound-spectrographic analysis of vocalizations in the clawed frog, Xenopus laevis). Experientia 26(4):435–436

    Google Scholar 

  • Picker M (1983) Hormonal induction of the aquatic phonotactic response of Xenopus. Behaviour 84(1):74–90

    Google Scholar 

  • Rienstra S, Hirschberg A (2019) An introduction to acoustics (Technische Universiteit Eindhoven/Eindhoven University of Technology) §5.2.3

    Google Scholar 

  • Shearer M, Levy R (2015) Partial differential equations: an introduction to theory and applications. Princeton University Press, Princeton

    Google Scholar 

  • Szpir MR, Sento S, Ryugo DK (1990) Central projections of cochlear nerve fibers in the alligator lizard. J Comp Neurol 295(4):530–547

    Article  CAS  PubMed  Google Scholar 

  • Temkin S (1981) Elements of acoustics. Wiley, New York

    Google Scholar 

  • Tobias ML, Evans BJ, Kelley DB (2011) Evolution of advertisement calls in African clawed frogs. Behaviour 148(4):519–549

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hemmen JL (2002) The map in your head: how does the brain represent the outside world? ChemPhysChem 3:291–298

    Article  PubMed  Google Scholar 

  • van Hemmen JL (2016) Acoustic boundary-condition dynamics and internally coupled ears. SIAM News 49(8):1+3

    Google Scholar 

  • van Hemmen JL, Christensen-Dalsgaard J, Carr CE, Narins P (2016) Animals and ICE: meaning, origin, and diversity. Biol Cybern 110:237–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Vedurmudi AP, Goulet J, Christensen-Dalsgaard J, Young BA, Williams R, van Hemmen JL (2016a) How internally coupled ears generate temporal and amplitude cues for sound localization. Phys Rev Lett 116:028101

    Article  CAS  PubMed  Google Scholar 

  • Vedurmudi AP, Young BA, van Hemmen JL (2016b) Internally coupled ears: mathematical structures and mechanisms underlying ICE. Biol Cybern 110:359–382

    Article  PubMed  Google Scholar 

  • Vedurmudi AP, Christensen-Dalsgaard J, van Hemmen JL (2018) Modeling underwater hearing and sound localization in the aquatic frog Xenopus laevis. J Acoust Soc Am 144(5):3010–3021

    Google Scholar 

  • Vedurmudi AP, Young BA, van Hemmen JL (2020) Active tympanic tuning facilitates sound localization in animals with internally coupled ears. Hearing Res 387:107861

    Article  Google Scholar 

  • Vossen C (2010) Auditory information processing in systems with internally coupled ears. Doctoral dissertation. Technical University of Munich/Physik Department T35. See also: https://mediatum.ub.tum.de/node?id=981238

  • Vossen C, Christensen-Dalsgaard J, van Hemmen JL (2010) An analytical model of internally coupled ears. J Acoust Soc Am 128:909–918

    Article  PubMed  Google Scholar 

  • Willis KL, Christensen-Dalsgaard J, Carr CE (2014) Auditory brain stem processing in reptiles and amphibians: roles of coupled ears. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer handbook in auditory research, vol 49. Springer, New York, pp 193–225

    Chapter  Google Scholar 

  • Yosida K (1980) Functional analysis, 6th edn. Springer, Berlin

    Google Scholar 

  • Young BA (2003) Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. Q Rev Biol 78:303–325

    Article  PubMed  Google Scholar 

  • Young BA, Bierman HS (2019) On the median pharyngeal valve of the American alligator (Alligator mississippiensis). J Morphol 280:58–67

    Google Scholar 

  • Zeddies DG, Fay RR, Sisneros JA (2011) Sound source localization and directional hearing in fishes. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 1. Academic, San Diego, pp 298–303

    Chapter  Google Scholar 

Download references

Acknowledgments

In the context of ICE, the author is greatly indebted to several friends and colleagues for their collaboration, criticism, and support. He particularly thanks Catherine Carr, Jakob Christensen-Dalsgaard, David Heider, Peter Narins, Anupam Vedurmudi, Christine Vossen, and Bruce Young.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leo van Hemmen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

van Hemmen, J.L. (2022). Internally Coupled Ears (ICE): Biophysical Consequences and Underlying Mechanisms. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1006-0_100686

Download citation

Publish with us

Policies and ethics

Navigation