Food Seeking in Spite of Harmful Consequences

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Part of the book series: Neuromethods ((NM,volume 161))

  • 417 Accesses

Abstract

In industrialized nations, overeating is a significant problem leading to overweight, obesity, and a host of related disorders; the increase in these disorders has prompted a significant amount of research aimed at understanding their etiology. Eating disorders are multifactorial conditions involving genetic, metabolic, environmental, and behavioral factors. Considering that compulsive eating in the face of adverse consequences characterizes some eating disorders, similar to the way in which compulsive drug intake characterizes drug addiction, it might be considered an addiction in its own right. Moreover, numerous review articles have drawn a connection between the neural circuits activated in the seeking/intake of palatable food and drugs of abuse. Based on this observation, “food addiction” has emerged as an area of intense scientific research, and accumulating evidence suggests it is possible to model some aspects of food addiction in animals. The development of well-characterized animal models would advance our understanding of the etiologic neural factors involved in eating disorders, such as compulsive overeating, and it would permit to propose targeted pharmacological therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Association, Washington, DC

    Book  Google Scholar 

  2. Nolan LJ (2017) Is it time to consider the “food use disorder?”. Appetite 115:16–18

    Article  PubMed  Google Scholar 

  3. Schulte EM, Potenza MN, Gearhardt AN (2017) A commentary on the “eating addiction” versus “food addiction” perspectives on addictive-like food consumption. Appetite 115:9–15

    Article  PubMed  Google Scholar 

  4. Lacroix E, Tavares H, von Ranson KM (2018) Moving beyond the “eating addiction” versus “food addiction” debate: comment on Schulte et al. (2017). Appetite 130:286–292

    Article  PubMed  Google Scholar 

  5. Fletcher PC, Kenny PJ (2018) Food addiction: a valid concept? Neuropsychopharmacology 43(13):2506–2513

    Article  PubMed  PubMed Central  Google Scholar 

  6. Finlayson G (2017) Food addiction and obesity: unnecessary medicalization of hedonic overeating. Nat Rev Endocrinol 13(8):493–498

    Article  PubMed  Google Scholar 

  7. Long CG, Blundell JE, Finlayson G (2015) A systematic review of the application and correlates of YFAS-diagnosed ‘food addiction’ in humans: are eating-related ‘addictions’ a cause for concern or empty concepts? Obes Facts 8(6):386–401

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gearhardt AN, Schulte EM, Schiestl ET (2019) Food addiction prevalence: development and validation of diagnostic tools. In: Compulsive eating behavior and food addiction. Academic Press, pp 15–39

    Google Scholar 

  9. Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8(5):555

    Article  CAS  PubMed  Google Scholar 

  10. Hagan MM et al (2003) The role of palatable food and hunger as trigger factors in an animal model of stress induced binge eating. Int J Eat Disord 34(2):183–197

    Article  PubMed  Google Scholar 

  11. Corwin RL, Buda-Levin A (2004) Behavioral models of binge-type eating. Physiol Behav 82(1):123–130

    Article  CAS  PubMed  Google Scholar 

  12. Dallman MF et al (2003) Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci U S A 100(20):11696–11701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heyne A et al (2009) An animal model of compulsive food-taking behaviour. Addict Biol 14(4):373–383

    Article  PubMed  Google Scholar 

  14. Volkow ND et al (2008) Overlap** neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond Ser B Biol Sci 363(1507):3191–3200

    Article  Google Scholar 

  15. Corwin RL, Avena NM, Boggiano MM (2011) Feeding and reward: perspectives from three rat models of binge eating. Physiol Behav 104(1):87–97

    Article  CAS  PubMed  Google Scholar 

  16. Parylak SL, Koob GF, Zorrilla EP (2011) The dark side of food addiction. Physiol Behav 104(1):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017

    Article  CAS  PubMed  Google Scholar 

  18. Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305(5686):1017–1019

    Article  CAS  PubMed  Google Scholar 

  19. Hoebel BG et al (2009) Natural addiction: a behavioral and circuit model based on sugar addiction in rats. J Addict Med 3(1):33–41

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gearhardt AN et al (2011) Neural correlates of food addiction. Arch Gen Psychiatry 68(8):808–816

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schulte EM, Avena NM, Gearhardt AN (2015) Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS One 10(2):e0117959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Schulte EM, Sonneville KR, Gearhardt AN (2019) Subjective experiences of highly processed food consumption in individuals with food addiction. Psychol Addict Behav 33(2):144–153

    Article  PubMed  Google Scholar 

  23. Ifland J et al (2015) Clearing the confusion around processed food addiction. J Am Coll Nutr 34(3):240–243

    Article  PubMed  Google Scholar 

  24. Schulte EM, Potenza MN, Gearhardt AN (2018) Specific theoretical considerations and future research directions for evaluating addictive-like eating as a substance-based, food addiction: comment on Lacroix et al. (2018). Appetite 130:293–295

    Article  PubMed  Google Scholar 

  25. Gordon EL et al (2018) What is the evidence for “food addiction?” A systematic review. Nutrients 10(4):477

    Article  PubMed Central  CAS  Google Scholar 

  26. Hebebrand J et al (2014) “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev 47:295–306

    Article  PubMed  Google Scholar 

  27. Ruddock HK et al (2017) The development and validation of the addiction-like eating behaviour scale. Int J Obes 41(11):1710–1717

    Article  CAS  Google Scholar 

  28. Albayrak O, Wolfle SM, Hebebrand J (2012) Does food addiction exist? A phenomenological discussion based on the psychiatric classification of substance-related disorders and addiction. Obes Facts 5(2):165–179

    Article  PubMed  Google Scholar 

  29. Gearhardt AN, Corbin WR, Brownell KD (2009) Preliminary validation of the Yale food addiction scale. Appetite 52(2):430–436

    Article  PubMed  Google Scholar 

  30. Schulte EM, Gearhardt AN (2017) Development of the modified Yale food addiction scale version 2.0. Eur Eat Disord Rev 25(4):302–308

    Article  PubMed  Google Scholar 

  31. Ziauddeen H, Farooqi IS, Fletcher PC (2012) Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci 13(4):279–286

    Article  CAS  PubMed  Google Scholar 

  32. Onaolapo AY, Onaolapo OJ (2018) Food additives, food and the concept of ‘food addiction’: is stimulation of the brain reward circuit by food sufficient to trigger addiction? Pathophysiology 25(4):263–276

    Article  CAS  PubMed  Google Scholar 

  33. Gearhardt AN et al (2011) The addiction potential of hyperpalatable foods. Curr Drug Abuse Rev 4(3):140–145

    Article  PubMed  Google Scholar 

  34. Gearhardt AN et al (2011) Can food be addictive? Public health and policy implications. Addiction 106(7):1208–1212

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rogers PJ, Smit HJ (2000) Food craving and food “addiction”: a critical review of the evidence from a biopsychosocial perspective. Pharmacol Biochem Behav 66(1):3–14

    Article  CAS  PubMed  Google Scholar 

  36. Ifland JR et al (2009) Refined food addiction: a classic substance use disorder. Med Hypotheses 72(5):518–526

    Article  CAS  PubMed  Google Scholar 

  37. Hagan MM et al (2002) A new animal model of binge eating: key synergistic role of past caloric restriction and stress. Physiol Behav 77(1):45–54

    Article  CAS  PubMed  Google Scholar 

  38. Boggiano MM, Chandler PC (2006) Binge eating in rats produced by combining dieting with stress. Curr Protoc Neurosci Chapter 9: Unit9 23A

    Google Scholar 

  39. Teegarden SL, Bale TL (2007) Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 61(9):1021–1029

    Article  PubMed  Google Scholar 

  40. Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32(1):20–39

    Article  CAS  PubMed  Google Scholar 

  41. Le Merrer J, Stephens DN (2006) Food-induced behavioral sensitization, its cross-sensitization to cocaine and morphine, pharmacological blockade, and effect on food intake. J Neurosci 26(27):7163–7171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lenoir M et al (2007) Intense sweetness surpasses cocaine reward. PLoS One 2(8):e698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Coccurello R, D'Amato FR, Moles A (2009) Chronic social stress, hedonism and vulnerability to obesity: lessons from rodents. Neurosci Biobehav Rev 33(4):537–550

    Article  PubMed  Google Scholar 

  44. Petrovich GD et al (2007) Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci 27(24):6436–6441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cottone P et al (2008) Opioid-dependent anticipatory negative contrast and binge-like eating in rats with limited access to highly preferred food. Neuropsychopharmacology 33(3):524–535

    Article  CAS  PubMed  Google Scholar 

  47. Cottone P et al (2009) CRF system recruitment mediates dark side of compulsive eating. Proc Natl Acad Sci USA 106(47):20016–20020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cifani C et al (2009) A preclinical model of binge eating elicited by yo-yo dieting and stressful exposure to food: effect of sibutramine, fluoxetine, topiramate, and midazolam. Psychopharmacology 204(1):113–125

    Article  CAS  PubMed  Google Scholar 

  49. Avena NM, Hoebel BG (2003) A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 122(1):17–20

    Article  CAS  PubMed  Google Scholar 

  50. Lindgren E et al (2018) Food addiction: a common neurobiological mechanism with drug abuse. Front Biosci (Landmark Ed) 23:811–836

    Article  CAS  Google Scholar 

  51. Yokum S, Stice E Neuroimaging of compulsive disorders: similarities of food addiction with drug addiction. In: Compulsive eating behavior and food addiction. Academic Press, pp 329–358

    Google Scholar 

  52. Wiss DA, Avena NM, Rada P (2018) Sugar addiction: from evolution to revolution. Front Psych 9:545

    Article  Google Scholar 

  53. Thornley S et al (2008) The obesity epidemic: is glycemic index the key to unlocking a hidden addiction? Med Hypotheses 71(5):709–714

    Article  CAS  PubMed  Google Scholar 

  54. Trinko R et al (2007) Neural mechanisms underlying obesity and drug addiction. Physiol Behav 91(5):499–505

    Article  CAS  PubMed  Google Scholar 

  55. Fallon S et al (2007) Food reward-induced neurotransmitter changes in cognitive brain regions. Neurochem Res 32(10):1772–1782

    Article  CAS  PubMed  Google Scholar 

  56. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22(9):3306–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pelchat ML (2002) Of human bondage: food craving, obsession, compulsion, and addiction. Physiol Behav 76(3):347–352

    Article  CAS  PubMed  Google Scholar 

  58. Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci U S A 104(12):5181–5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ventura R et al (2008) Prefrontal norepinephrine determines attribution of “high” motivational salience. PLoS One 3(8):e3044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang GJ et al (2004) Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 23(3):39–53

    Article  PubMed  Google Scholar 

  61. Berner LA et al (2009) Baclofen suppresses binge eating of pure fat but not a sugar-rich or sweet-fat diet. Behav Pharmacol 20(7):631–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience 105(3):535–545

    Article  CAS  PubMed  Google Scholar 

  63. Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from imaging studies. J Clin Invest 111(10):1444–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moore CF et al (2019) Dissecting compulsive eating behavior into three elements. In: Compulsive eating behavior and food addiction. Academic Press, pp 41–81

    Google Scholar 

  65. Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46

    Article  CAS  PubMed  Google Scholar 

  66. Volkow ND et al (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage 42(4):1537–1543

    Article  PubMed  Google Scholar 

  67. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    Article  CAS  PubMed  Google Scholar 

  68. Everitt BJ et al (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond Ser B Biol Sci 363(1507):3125–3135

    Article  Google Scholar 

  69. Rolls ET (2004) Smell, taste, texture, and temperature multimodal representations in the brain, and their relevance to the control of appetite. Nutr Rev 62(11 Pt 2):S193–S204. discussion S224–S241

    Article  PubMed  Google Scholar 

  70. Killgore WD et al (2003) Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage 19(4):1381–1394

    Article  PubMed  Google Scholar 

  71. Uher R et al (2004) Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry 161(7):1238–1246

    Article  PubMed  Google Scholar 

  72. Caref K, Nicola SM (2018) Endogenous opioids in the nucleus accumbens promote approach to high-fat food in the absence of caloric need. elife 7

    Google Scholar 

  73. Gautier JF et al (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49(5):838–846

    Article  CAS  PubMed  Google Scholar 

  74. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652

    Article  PubMed  PubMed Central  Google Scholar 

  75. Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97(5):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Castro DC, Berridge KC (2014) Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J Neurosci 34(12):4239–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Giuliano C, Cottone P (2015) The role of the opioid system in binge eating disorder. CNS Spectr 20(6):537–545

    Article  PubMed  Google Scholar 

  78. Laurent V, Morse AK, Balleine BW (2015) The role of opioid processes in reward and decision-making. Br J Pharmacol 172(2):449–459

    Article  CAS  PubMed  Google Scholar 

  79. Wassum KM et al (2009) Disruption of endogenous opioid activity during instrumental learning enhances habit acquisition. Neuroscience 163(3):770–780

    Article  CAS  PubMed  Google Scholar 

  80. Corbit LH (2016) Effects of obesogenic diets on learning and habitual responding. Curr Opin Behav Sci 9:84–90

    Article  Google Scholar 

  81. Gorelick DA et al (2005) Imaging brain mu-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol Psychiatry 57(12):1573–1582

    Article  CAS  PubMed  Google Scholar 

  82. Heinz A et al (2005) Correlation of stable elevations in striatal mu-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry 62(1):57–64

    Article  PubMed  Google Scholar 

  83. Palpacuer C et al (2015) Risks and benefits of nalmefene in the treatment of adult alcohol dependence: a systematic literature review and meta-analysis of published and unpublished double-blind randomized controlled trials. PLoS Med 12(12):e1001924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Whistler JL (2012) Examining the role of mu opioid receptor endocytosis in the beneficial and side-effects of prolonged opioid use: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend 121(3):189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Joutsa J et al (2018) Binge eating disorder and morbid obesity are associated with lowered mu-opioid receptor availability in the brain. Psychiatry Res Neuroimaging 276:41–45

    Article  PubMed  Google Scholar 

  86. Karlsson HK et al (2015) Obesity is associated with decreased mu-opioid but unaltered dopamine D2 receptor availability in the brain. J Neurosci 35(9):3959–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tuominen L et al (2015) Aberrant mesolimbic dopamine-opiate interaction in obesity. NeuroImage 122:80–86

    Article  CAS  PubMed  Google Scholar 

  88. Darracq L et al (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci 18(7):2729–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feenstra MG, Botterblom MH, Mastenbroek S (2000) Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 100(4):741–748

    Article  CAS  PubMed  Google Scholar 

  90. Ventura R, Alcaro A, Puglisi-Allegra S (2005) Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb Cortex 15(12):1877–1886

    Article  PubMed  Google Scholar 

  91. Ventura R et al (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 23(5):1879–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mingote S, de Bruin JP, Feenstra MG (2004) Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. J Neurosci 24(10):2475–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Latagliata EC et al (2010) Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control. BMC Neurosci 11:15

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hikida T et al (2003) Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc Natl Acad Sci U S A 100(10):6169–6173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500

    Article  CAS  PubMed  Google Scholar 

  96. Calvey T (2017) The extended evolutionary synthesis and addiction: the price we pay for adaptability. Prog Brain Res 235:1–18

    Article  PubMed  Google Scholar 

  97. Egervari G et al (2018) Sha** vulnerability to addiction – the contribution of behavior, neural circuits and molecular mechanisms. Neurosci Biobehav Rev 85:117–125

    Article  PubMed  Google Scholar 

  98. De Sa Nogueira D, Merienne K, Befort K (2019) Neuroepigenetics and addictive behaviors: where do we stand? Neurosci Biobehav Rev 106:58–72

    Article  PubMed  CAS  Google Scholar 

  99. Cao-Lei L et al (2014) DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: project ice storm. PLoS One 9(9):e107653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. St-Hilaire A et al (2015) A prospective study of effects of prenatal maternal stress on later eating-disorder manifestations in affected offspring: preliminary indications based on the project ice storm cohort. Int J Eat Disord 48(5):512–516

    Article  PubMed  Google Scholar 

  101. Caslini M et al (2016) Disentangling the association between child abuse and eating disorders: a systematic review and meta-analysis. Psychosom Med 78(1):79–90

    Article  PubMed  Google Scholar 

  102. Frieling H et al (2010) Epigenetic dysregulation of dopaminergic genes in eating disorders. Int J Eat Disord 43(7):577–583

    Article  PubMed  Google Scholar 

  103. Groleau P et al (2014) Methylation of the dopamine D2 receptor (DRD2) gene promoter in women with a bulimia-spectrum disorder: associations with borderline personality disorder and exposure to childhood abuse. J Psychiatr Res 48(1):121–127

    Article  PubMed  Google Scholar 

  104. Steiger H et al (2013) Methylation of the glucocorticoid receptor gene promoter in bulimic women: associations with borderline personality disorder, suicidality, and exposure to childhood abuse. Int J Eat Disord 46(3):246–255

    Article  PubMed  Google Scholar 

  105. Thaler L et al (2014) Methylation of BDNF in women with bulimic eating syndromes: associations with childhood abuse and borderline personality disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 54:43–49

    Article  CAS  Google Scholar 

  106. Hubel C et al (2019) Epigenetics in eating disorders: a systematic review. Mol Psychiatry 24(6):901–915

    Article  PubMed  Google Scholar 

  107. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91(4):449–458

    Article  CAS  PubMed  Google Scholar 

  108. Kaye WH et al (2013) Does a shared neurobiology for foods and drugs of abuse contribute to extremes of food ingestion in anorexia and bulimia nervosa? Biol Psychiatry 73(9):836–842

    Article  PubMed  PubMed Central  Google Scholar 

  109. Culbert KM, Racine SE, Klump KL (2015) Research review: what we have learned about the causes of eating disorders – a synthesis of sociocultural, psychological, and biological research. J Child Psychol Psychiatry 56(11):1141–1164

    Article  PubMed  Google Scholar 

  110. Mancino S et al (2015) Epigenetic and proteomic expression changes promoted by eating addictive-like behavior. Neuropsychopharmacology 40(12):2788–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rogers PJ, Brunstrom JM (2016) Appetite and energy balancing. Physiol Behav 164(Pt B):465–471

    Article  CAS  PubMed  Google Scholar 

  112. de Macedo IC, de Freitas JS, da Silva Torres IL (2016) The influence of palatable diets in reward system activation: a mini review. Adv Pharmacol Sci 2016:7238679

    PubMed  PubMed Central  Google Scholar 

  113. Ghitza UE et al (2007) Peptide YY3–36 decreases reinstatement of high-fat food seeking during dieting in a rat relapse model. J Neurosci 27(43):11522–11532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Parker G, Parker I, Brotchie H (2006) Mood state effects of chocolate. J Affect Disord 92(2–3):149–159

    Article  PubMed  Google Scholar 

  115. Polivy J, Herman CP (1985) Dieting and binging. A causal analysis. Am Psychol 40(2):193–201

    Article  CAS  PubMed  Google Scholar 

  116. Bulik CM et al (1997) Initial manifestations of disordered eating behavior: dieting versus binging. Int J Eat Disord 22(2):195–201

    Article  CAS  PubMed  Google Scholar 

  117. Howard CE, Porzelius LK (1999) The role of dieting in binge eating disorder: etiology and treatment implications. Clin Psychol Rev 19(1):25–44

    Article  CAS  PubMed  Google Scholar 

  118. Carr KD (2011) Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: binge eating and drug abuse. Physiol Behav 104(1):162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Corwin RL (2011) The face of uncertainty eats. Curr Drug Abuse Rev 4(3):174–181

    Article  PubMed  Google Scholar 

  120. Corwin RL (2006) Bingeing rats: a model of intermittent excessive behavior? Appetite 46(1):11–15

    Article  PubMed  Google Scholar 

  121. Ahmed SH et al (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5(7):625–626

    Article  CAS  PubMed  Google Scholar 

  122. Wee S, Specio SE, Koob GF (2007) Effects of dose and session duration on cocaine self-administration in rats. J Pharmacol Exp Ther 320(3):1134–1143

    Article  CAS  PubMed  Google Scholar 

  123. Ghitza UE et al (2006) The anxiogenic drug yohimbine reinstates palatable food seeking in a rat relapse model: a role of CRF1 receptors. Neuropsychopharmacology 31(10):2188–2196

    Article  CAS  PubMed  Google Scholar 

  124. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33(1):13–33

    Article  CAS  PubMed  Google Scholar 

  125. Marinelli M, Piazza PV (2002) Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 16(3):387–394

    Article  PubMed  Google Scholar 

  126. Brady KT, Sinha R (2005) Co-occurring mental and substance use disorders: the neurobiological effects of chronic stress. Am J Psychiatry 162(8):1483–1493

    Article  PubMed  Google Scholar 

  127. Dallman MF, Pecoraro NC, la Fleur SE (2005) Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun 19(4):275–280

    Article  PubMed  Google Scholar 

  128. Pecoraro N et al (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145(8):3754–3762

    Article  CAS  PubMed  Google Scholar 

  129. Casper RC, Sullivan EL, Tecott L (2008) Relevance of animal models to human eating disorders and obesity. Psychopharmacology 199(3):313–329

    Article  CAS  PubMed  Google Scholar 

  130. Fairburn CG (1997) Bulimia outcome. Am J Psychiatry 154(12):1791; author reply 1791–1792

    CAS  PubMed  Google Scholar 

  131. Burger KS, Stice E (2011) Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. NeuroImage 55(1):233–239

    Article  PubMed  Google Scholar 

  132. Waters A, Hill A, Waller G (2001) Bulimics' responses to food cravings: is binge-eating a product of hunger or emotional state? Behav Res Ther 39(8):877–886

    Article  CAS  PubMed  Google Scholar 

  133. Cabib S et al (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289(5478):463–465

    Article  CAS  PubMed  Google Scholar 

  134. Armario A, Montero JL, Jolin T (1987) Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone. Ann Nutr Metab 31(2):81–87

    Article  CAS  PubMed  Google Scholar 

  135. Garcia-Belenguer S, Oliver C, Mormede P (1993) Facilitation and feedback in the hypothalamo-pituitary-adrenal axis during food restriction in rats. J Neuroendocrinol 5(6):663–668

    Article  CAS  PubMed  Google Scholar 

  136. Han ES, Evans TR, Nelson JF (1998) Adrenocortical responsiveness to adrenocorticotropic hormone is enhanced in chronically food-restricted rats. J Nutr 128(9):1415–1420

    Article  CAS  PubMed  Google Scholar 

  137. Johansson A et al (2008) The relative impact of chronic food restriction and acute food deprivation on plasma hormone levels and hypothalamic neuropeptide expression. Peptides 29(9):1588–1595

    Article  CAS  PubMed  Google Scholar 

  138. Pankevich DE et al (2010) Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating. J Neurosci 30(48):16399–16407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Carr KD (2002) Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav 76(3):353–364

    Article  CAS  PubMed  Google Scholar 

  140. Deroche V et al (1995) Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15(11):7181–7188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oswald KD et al (2011) Motivation for palatable food despite consequences in an animal model of binge eating. Int J Eat Disord 44(3):203–211

    Article  PubMed  PubMed Central  Google Scholar 

  142. Patrono E et al (2015) When chocolate seeking becomes compulsion: gene-environment interplay. PLoS One 10(3):e0120191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Cottone P et al (2008) Intermittent access to preferred food reduces the reinforcing efficacy of chow in rats. Am J Physiol Regul Integr Comp Physiol 295(4):R1066–R1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Czyzyk TA, Sahr AE, Statnick MA (2010) A model of binge-like eating behavior in mice that does not require food deprivation or stress. Obesity (Silver Spring) 18(9):1710–1717

    Article  Google Scholar 

  145. Rossetti C et al (2014) Evidence for a compulsive-like behavior in rats exposed to alternate access to highly preferred palatable food. Addict Biol 19(6):975–985

    Article  PubMed  Google Scholar 

  146. Cottone P et al (2009) Consummatory, anxiety-related and metabolic adaptations in female rats with alternating access to preferred food. Psychoneuroendocrinology 34(1):38–49

    Article  CAS  PubMed  Google Scholar 

  147. Iemolo A et al (2012) Withdrawal from chronic, intermittent access to a highly palatable food induces depressive-like behavior in compulsive eating rats. Behav Pharmacol 23(5–6):593–602

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dore R et al (2014) The inverse agonist of CB1 receptor SR141716 blocks compulsive eating of palatable food. Addict Biol 19(5):849–861

    Article  CAS  PubMed  Google Scholar 

  149. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300

    Article  CAS  PubMed  Google Scholar 

  150. Ahmed SH, Walker JR, Koob GF (2000) Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 22(4):413–421

    Article  CAS  PubMed  Google Scholar 

  151. George O et al (2007) CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci U S A 104(43):17198–17203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Calvez J, Timofeeva E (2016) Behavioral and hormonal responses to stress in binge-like eating prone female rats. Physiol Behav 157:28–38

    Article  CAS  PubMed  Google Scholar 

  153. De Vries TJ et al (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 7(10):1151–1154

    Article  PubMed  CAS  Google Scholar 

  154. Fattore L et al (2003) Cannabinoid mechanism in reinstatement of heroin-seeking after a long period of abstinence in rats. Eur J Neurosci 17(8):1723–1726

    Article  CAS  PubMed  Google Scholar 

  155. Cippitelli A et al (2005) Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of ethanol-seeking behavior in rats. Eur J Neurosci 21(8):2243–2251

    Article  PubMed  Google Scholar 

  156. Cohen C, Kodas E, Griebel G (2005) CB1 receptor antagonists for the treatment of nicotine addiction. Pharmacol Biochem Behav 81(2):387–395

    Article  CAS  PubMed  Google Scholar 

  157. Velazquez-Sanchez C et al (2015) Seeking behavior, place conditioning, and resistance to conditioned suppression of feeding in rats intermittently exposed to palatable food. Behav Neurosci 129(2):219–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Smith KL et al (2015) The uncompetitive N-methyl-D-aspartate antagonist memantine reduces binge-like eating, food-seeking behavior, and compulsive eating: role of the nucleus accumbens shell. Neuropsychopharmacology 40(5):1163–1171

    Article  CAS  PubMed  Google Scholar 

  159. Blokhina EA et al (2005) Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice. Eur Neuropsychopharmacol 15(2):219–225

    Article  CAS  PubMed  Google Scholar 

  160. Hyytia P, Backstrom P, Liljequist S (1999) Site-specific NMDA receptor antagonists produce differential effects on cocaine self-administration in rats. Eur J Pharmacol 378(1):9–16

    Article  CAS  PubMed  Google Scholar 

  161. Sabino V et al (2013) mTOR activation is required for the anti-alcohol effect of ketamine, but not memantine, in alcohol-preferring rats. Behav Brain Res 247:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Semenova S, Danysz W, Bespalov A (1999) Low-affinity NMDA receptor channel blockers inhibit acquisition of intravenous morphine self-administration in naive mice. Eur J Pharmacol 378(1):1–8

    Article  CAS  PubMed  Google Scholar 

  163. Calvez J et al (2016) Role of relaxin-3/RXFP3 system in stress-induced binge-like eating in female rats. Neuropharmacology 102:207–215

    Article  CAS  PubMed  Google Scholar 

  164. Moshe L, Bekker L, Weller A (2017) A potential animal model of maladaptive palatable food consumption followed by delayed discomfort. Front Neurosci 11:377

    Article  PubMed  PubMed Central  Google Scholar 

  165. Boggiano MM et al (2007) High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating. Int J Obes 31(9):1357–1367

    Article  CAS  Google Scholar 

  166. Plomin R et al (1991) Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav Genet 21(2):99–116

    Article  CAS  PubMed  Google Scholar 

  167. Ellenbroek B, Youn J (2016) Rodent models in neuroscience research: is it a rat race? Dis Model Mech 9(10):1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Babbs RK et al (2018) Genetic differences in the behavioral organization of binge eating, conditioned food reward, and compulsive-like eating in C57BL/6J and DBA/2J strains. Physiol Behav 197:51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kirkpatrick SL et al (2017) Cytoplasmic FMR1-interacting protein 2 is a major genetic factor underlying binge eating. Biol Psychiatry 81(9):757–769

    Article  CAS  PubMed  Google Scholar 

  170. Spink AJ et al (2001) The EthoVision video tracking system--a tool for behavioral phenoty** of transgenic mice. Physiol Behav 73(5):731–744

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Alessandro Ribaldo for figures regarding schematic representation of apparatus and Jenna Hollenstein for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ventura, R., Babicola, L., Andolina, D., Patrono, E., Di Segni, M. (2021). Food Seeking in Spite of Harmful Consequences. In: Avena, N.M. (eds) Animal Models of Eating Disorders. Neuromethods, vol 161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0924-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0924-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0923-1

  • Online ISBN: 978-1-0716-0924-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation