Salt-Dependent Modulation of the RNA Chaperone Activity of RNA-Binding Protein La

  • Protocol
  • First Online:
RNA Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2106))

Abstract

It is well established that the RNA-binding protein La has RNA chaperone activity. Recent work suggests that the La protein has two distinct RNA chaperone domains (RCD-A and RCD-B) assisting structural changes in diverse groups of RNA molecules such as RNA polymerase III transcripts (e.g., pre-tRNA, U6 snRNA), cellular messenger, and viral RNAs. In this protocol we focus on the RNA chaperone domain RCD-B, which is located in the carboxy-terminal domain of La. It has been shown that this RNA chaperone domain assists structural changes in predicted RNA hairpins folded in the 5′-untranslated regions of cyclin D1 and Bcl2 mRNAs. Besides RNA helicases, which are implicated in melting RNA hairpin structures in an ATP-dependent manner, RNA chaperones fulfil a similar function in an ATP-independent manner. Aiming to study the RNA chaperon activity of La, we established a La-dependent molecular beacon-based RNA chaperone assay and systematically tested the various salt conditions. Herein we describe the assay format and design to study the salt dependency of RNA chaperones. This protocol can be easily adapted to test the RNA chaperone activity of other RNA-binding proteins and to optimize assay conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park JM et al (2006) The multifunctional RNA-binding protein La is required for mouse development and for the establishment of embryonic stem cells. Mol Cell Biol 26:1445–1451

    Article  CAS  Google Scholar 

  2. Maraia RJ, Intine RV (2001) Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 21:367–379

    Article  CAS  Google Scholar 

  3. Wolin SL, Cedervall T (2002) The la protein. Annu Rev Biochem 71:375–403

    Article  CAS  Google Scholar 

  4. Brenet F et al (2005) Mammalian peptidylglycine alpha-amidating monooxygenase mRNA expression can be modulated by the La autoantigen. Mol Cell Biol 25:7505–7521

    Article  CAS  Google Scholar 

  5. Ehlers I (2004) Functional characterization of the interaction between human La and hepatitis B virus RNA. J Biol Chem 279:43437–43447

    Article  CAS  Google Scholar 

  6. Heise T et al (1999) Hepatitis B virus RNA-binding proteins associated with cytokine-induced clearance of viral RNA from the liver of transgenic mice. J Virol 73:474–481

    Article  CAS  Google Scholar 

  7. Heise T, Guidotti LG, Chisari FV (1999) La autoantigen specifically recognizes a predicted stem-loop in hepatitis B virus RNA. J Virol 73:5767–5776

    Article  CAS  Google Scholar 

  8. Heise T, Guidotti LG, Chisari FV (2001) Characterization of nuclear RNases that cleave hepatitis B virus RNA near the La protein binding site. J Virol 75:6874–6883

    Article  CAS  Google Scholar 

  9. McLaren R, Caruccio N, Ross J (1997) Human La protein: a stabilizer of histone mRNA. Mol Cell Biol 17:3028–3036

    Article  CAS  Google Scholar 

  10. Spangberg K, Wiklund L, Schwartz S (2001) Binding of the La autoantigen to the hepatitis C virus 3′ untranslated region protects the RNA from rapid degradation in vitro. J Gen Virol 82:113–120

    Article  CAS  Google Scholar 

  11. Horke S et al (2004) Nuclear trafficking of La protein depends on a newly identified nucleolar localization signal and the ability to bind RNA. J Biol Chem 279:26563–26570

    Article  CAS  Google Scholar 

  12. Simons FH et al (1996) Characterization of cis-acting signals for nuclear import and retention of the La (SS-B) autoantigen. Exp Cell Res 224:224–236

    Article  CAS  Google Scholar 

  13. Intine RV et al (2004) Nonphosphorylated human La antigen interacts with nucleolin at nucleolar sites involved in rRNA biogenesis. Mol Cell Biol 24:10894–10904

    Article  CAS  Google Scholar 

  14. Brenet F et al (2009) Akt phosphorylation of La regulates specific mRNA translation in glial progenitors. Oncogene 28:128–139

    Article  CAS  Google Scholar 

  15. Fok V, Friend K, Steitz JA (2006) Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J Cell Biol 173:319–325

    Article  CAS  Google Scholar 

  16. Golebiowski F et al (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24

    Article  Google Scholar 

  17. van Niekerk EA et al (2007) Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proc Natl Acad Sci U S A 104:12913–12918

    Article  Google Scholar 

  18. Fan H et al (1997) Phosphorylation of the human La antigen on serine 366 can regulate recycling of RNA polymerase III transcription complexes. Cell 88:707–715

    Article  CAS  Google Scholar 

  19. Broekhuis CH et al (2000) Detailed analysis of the phosphorylation of the human La (SS-B) autoantigen. (De)phosphorylation does not affect its subcellular distribution. Biochemistry 39:3023–3033

    Article  CAS  Google Scholar 

  20. Kuehnert J et al (2015) Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation. Nucleic Acids Res 43:581–594

    Article  CAS  Google Scholar 

  21. Kota V et al (2016) SUMO-modification of the La protein facilitates binding to mRNA in vitro and in cells. PLoS One 11:e0156365

    Article  Google Scholar 

  22. Schwartz EI, Intine RV, Maraia RJ (2004) CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5′-terminal oligopyrimidine mRNA metabolism. Mol Cell Biol 24:9580–9591

    Article  CAS  Google Scholar 

  23. Bachmann M et al (1990) Characterization of the autoantigen La as a nucleic acid-dependent ATPase/dATPase with melting properties. Cell 60:85–93

    Article  CAS  Google Scholar 

  24. Huhn P et al (1997) Characterization of the autoantigen La (SS-B) as a dsRNA unwinding enzyme. Nucleic Acids Res 25:410–416

    Article  CAS  Google Scholar 

  25. Chakshusmathi G et al (2003) A La protein requirement for efficient pre-tRNA folding. EMBO J 22:6562–6572

    Article  CAS  Google Scholar 

  26. Pannone BK, Xue D, Wolin SL (1998) A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO J 17:7442–7453

    Article  CAS  Google Scholar 

  27. Naeeni AR, Conte MR, Bayfield MA (2012) RNA chaperone activity of human La protein is mediated by variant RNA recognition motif. J Biol Chem 287:5472–5482

    Article  CAS  Google Scholar 

  28. Hussain RH, Zawawi M, Bayfield MA (2013) Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7. Nucleic Acids Res 41:8715–8725

    Article  CAS  Google Scholar 

  29. Costa-Mattioli M, Svitkin Y, Sonenberg N (2004) La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol 24:6861–6870

    Article  CAS  Google Scholar 

  30. Heise T (2016) The La protein counteracts cisplatin-induced cell death by stimulating protein synthesis of anti-apoptotic factor Bcl2. Oncotarget. https://doi.org/10.18632/oncotarget.8819

  31. Holcik M, Korneluk RG (2000) Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol 20:4648–4657

    Article  CAS  Google Scholar 

  32. Petz M et al (2012) La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition. Nucleic Acids Res 40:290–302

    Article  CAS  Google Scholar 

  33. Sommer G et al (2011) The RNA-binding protein La contributes to cell proliferation and CCND1 expression. Oncogene 30:434–444

    Article  CAS  Google Scholar 

  34. Trotta R et al (2003) BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 3:145–160

    Article  CAS  Google Scholar 

  35. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Avery Zierk for technical support. This work was supported in part by National Institutes of Health Grants [1R01CA172567-01A1 to T.H.] and in part supported by pilot research funding from an American Cancer Society Institutional Research Grant awarded to the Hollings Cancer Center, Medical University of South Carolina [IRG-97-219-11 to T.H.]. We thank the Verein zur Förderung krebskranker und körperbehinderter Kinder Ostbayern e.V. (VKKK) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Heise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sommer, G., Sendlmeier, C., Heise, T. (2020). Salt-Dependent Modulation of the RNA Chaperone Activity of RNA-Binding Protein La. In: Heise, T. (eds) RNA Chaperones. Methods in Molecular Biology, vol 2106. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0231-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0231-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0230-0

  • Online ISBN: 978-1-0716-0231-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation