Liquid Chromatography Methods for Separation of Polar and Charged Intracellular Metabolites for 13C Metabolic Flux Analysis

  • Protocol
  • First Online:
Metabolic Flux Analysis in Eukaryotic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2088))

Abstract

Accurate quantification of mass isotopolog distribution (MID) of intracellular metabolites is a key requirement for 13C metabolic flux analysis (13C–MFA). Liquid chromatography coupled with mass spectrometry (LC/MS) has emerged as a frontrunner technique that combines two orthogonal separation strategies. While metabolomics requires separation of monoisotopic peaks, 13C-MFA imposes additional demands for chromatographic separation as isotopologs of metabolites significantly add to the number of analytes. In this protocol chapter, we discuss two liquid chromatography methods, namely, reverse phase ion-pairing and hydrophilic interaction chromatography (HILIC) that together can separate a wide variety of metabolites that are typically used for 13C metabolic flux analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mathew AK, Padmanaban VC (2013) Metabolomics: the apogee of the omics trilogy. Int J Pharm Pharm Sci 5:45–48. https://doi.org/10.1038/nrm3314

    Article  CAS  Google Scholar 

  2. Fiehn O, Kopka J, Dörmann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161. https://doi.org/10.1038/81137

    Article  CAS  PubMed  Google Scholar 

  3. McAtee AG, Jazmin LJ, Young JD (2015) Application of isotope labeling experiments and 13C flux analysis to enable rational pathway engineering. Curr Opin Biotechnol 36:50–56. https://doi.org/10.1016/j.copbio.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee SY, Park JM, Kim TY (2011) Application of metabolic flux analysis in metabolic engineering, 1st edn. Elsevier Inc, Amsterdam

    Google Scholar 

  6. Ohta E, Dempo Y, Fukusaki E et al (2014) Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 4:499–516. https://doi.org/10.3390/metabo4020499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo B, Groenke K, Takors R et al (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164. https://doi.org/10.1016/j.chroma.2007.02.034

    Article  CAS  PubMed  Google Scholar 

  8. Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242. https://doi.org/10.1016/j.jchromb.2008.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Map** photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13:656–665. https://doi.org/10.1016/j.ymben.2011.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alagesan S, Gaudana SB, Sinha A, Wangikar PP (2013) Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions. Photosynth Res 118:191–198. https://doi.org/10.1007/s11120-013-9911-5

    Article  CAS  PubMed  Google Scholar 

  11. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal Bioanal Chem 402:231–247. https://doi.org/10.1007/s00216-011-5308-5

    Article  CAS  PubMed  Google Scholar 

  12. Keasling JD, Adams PD, Benites VT et al (2018) Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng 47:60–72. https://doi.org/10.1016/j.ymben.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  13. Prasannan CB, Jaiswal D, Davis R, Wangikar PP (2018) An improved method for extraction of polar and charged metabolites from cyanobacteria. PLoS One 13(10):1–16. https://doi.org/10.21228/M8WT20

    Article  Google Scholar 

  14. Jaiswal D, Prasannan CB, Hendry JI, Wangikar PP (2018) SWATH tandem mass spectrometry workflow for quantification of mass isotopologue distribution of intracellular metabolites and fragments labeled with isotopic 13C carbon. Anal Chem 90:6486–6493. https://doi.org/10.1021/acs.analchem.7b05329

    Article  CAS  PubMed  Google Scholar 

  15. Hendry JI, Prasannan C, Ma F et al (2017) Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13C metabolic flux analysis. Biotechnol Bioeng 114:2298–2308. https://doi.org/10.1002/bit.26350

    Article  CAS  PubMed  Google Scholar 

  16. McCloskey D, Utrilla J, Naviaux RK et al (2014) Fast Swinnex filtration (FSF): a fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media. Metabolomics 11:198–209. https://doi.org/10.1007/s11306-014-0686-2

    Article  CAS  Google Scholar 

  17. Ikeda TP, Shauger AE, Kustu S (1996) Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J Mol Biol 259:589–607. https://doi.org/10.1006/jmbi.1996.0342

    Article  CAS  PubMed  Google Scholar 

  18. Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22:1434–1442. https://doi.org/10.1021/bp050381q

    Article  CAS  PubMed  Google Scholar 

  19. Lu W, Kimball E, Rabinowitz JD (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J Am Soc Mass Spectrom 17:37–50. https://doi.org/10.1016/j.jasms.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  20. Ståhlberg J (1999) Retention models for ions in chromatography. J Chromatogr A 855:3–55. https://doi.org/10.1016/S0021-9673(99)00176-4

    Article  PubMed  Google Scholar 

  21. Qian T, Cai Z, Yang MS (2004) Determination of adenosine nucleotides in cultured cells by ion-pairing liquid chromatography-electrospray ionization mass spectrometry. Anal Biochem 325:77–84. https://doi.org/10.1016/j.ab.2003.10.028

    Article  CAS  PubMed  Google Scholar 

  22. Lu W, Clasquin MF, Melamud E et al (2010) Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone Orbitrap mass spectrometer. Anal Chem 82:3212–3221

    Article  CAS  Google Scholar 

  23. Mccloskey D, Gangoiti JA (2015) A pH and solvent optimized reverse-phase ion-paring-LC-MS/MS method that leverages multiple scan-types for targeted absolute quantification of intracellular metabolites. Metabolomics 11:1338–1350. https://doi.org/10.1007/s11306-015-0790-y

    Article  CAS  Google Scholar 

  24. Jaiswal D, Sengupta A, Sohoni S, Sengupta S (2018) Genome features and biochemical characteristics of a robust , fast growing and naturally transformable Cyanobacterium Synechococcus elongatus PCC 11801 isolated from India. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-34872-z

    Article  CAS  Google Scholar 

  25. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196. https://doi.org/10.1016/S0021-9673(00)96972-3

    Article  CAS  Google Scholar 

  26. Navarro-Reig M, Ortiz-Villanueva E, Tauler R, Jaumot J (2017) Modelling of hydrophilic interaction liquid chromatography stationary phases using chemometric approaches. Meta 7:6–9. https://doi.org/10.3390/metabo7040054

    Article  CAS  Google Scholar 

  27. Kawachi Y, Ikegami T, Takubo H et al (2011) Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: Hydrophilicity, charge effects, structural selectivity, and separation efficiency. J Chromatogr A 1218:5903–5919. https://doi.org/10.1016/j.chroma.2011.06.048

    Article  CAS  PubMed  Google Scholar 

  28. Creek DJ, Chokkathukalam A, Jankevics A et al (2012) Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Anal Chem 84:8442–8447. https://doi.org/10.1021/ac3018795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trammell SA, Brenner C (2013) Targeted, LCMS-based metabolomics for quantitative measurement of NAD+ metabolites. Comput Struct Biotechnol J 4:e201301012. https://doi.org/10.5936/csbj.201301012

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bustamante S, Jayasena T, Richani D et al (2018) Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Metabolomics 14:15. https://doi.org/10.1007/s11306-017-1310-z

    Article  CAS  Google Scholar 

  31. Tautenhahn R, Cho K, Uritboonthai W et al (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30:826–828. https://doi.org/10.1038/nbt.2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jewison T, Knox C, Neveu V et al (2012) YMDB: the yeast Metabolome database. Nucleic Acids Res 40:D815–D820. https://doi.org/10.1093/nar/gkr916

    Article  CAS  PubMed  Google Scholar 

  33. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:521–526. https://doi.org/10.1093/nar/gkl923

    Article  Google Scholar 

  34. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124. https://doi.org/10.1021/ed100697w

    Article  CAS  Google Scholar 

  35. Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Cai Y, Guo Y et al (2016) MetDIA: targeted metabolite extraction of multiplexed MS/MS spectra generated by data-independent acquisition. Anal Chem 88:8757–8764. https://doi.org/10.1021/acs.analchem.6b02122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Department of Biotechnology (DBT), Government of India, awarded to PPW toward DBT-Pan IIT Center for Bioenergy (Grant No. BT/EB/PAN IIT/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod P. Wangikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jaiswal, D., Mittal, A., Nagrath, D., Wangikar, P.P. (2020). Liquid Chromatography Methods for Separation of Polar and Charged Intracellular Metabolites for 13C Metabolic Flux Analysis. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation