The Basal Ganglia: Beyond the Motor System—From Movement to Thought

  • Chapter
  • First Online:
Subcortical Structures and Cognition

Abstract

In studying and practising a cortico-centric model of neuropsychology, few students or clinicians likely pay much attention to or fully understand the functions of the basal ganglia, a set of interconnected subcortical nuclei arising from the mammalian forebrain. This is, in part, due to the fact that the anatomical subdivisions of the basal ganglia can seem confusing. Some regions of the basal ganglia can be broken down into multiple components. Several basal ganglia structures feature further subdivisions, and some components of the basal ganglia can have more than one name, based on which structures are grouped together. There are reasons for these differences, which will be described in the course of this chapter.

Everything should be made as simple as possible, but not simpler.

Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albin, R. L., & Mink, J. W. (2006). Recent advances in Tourette syndrome research. Trends in Neuroscience, 29, 175–182.

    Article  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  PubMed  Google Scholar 

  • An, S. K., Mataix-Cols, D., Lawrence, N. S., Wooderson, S., Giampietro, V., Speckens, A., et al. (2008). To discard or not to discard: The neural basis of hoarding symptoms in obsessive-compulsive disorder. Molecular Psychiatry, doi: 10.1038/sj.mp.4002129.

    Google Scholar 

  • Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481.

    Article  PubMed  Google Scholar 

  • Ashby, F. G., Ell, S. W., Valentin, V. V., & Casale, M. B. (2005). FROST: A distributed neurocomputational model of working memory maintenance. Journal of Cognitive Neuroscience, 17, 1728–1743.

    Article  PubMed  Google Scholar 

  • Ashby, F. G., & Spiering, B. J. (2004). The neurobiology of category learning. Behavioral and Cognitive Neuroscience Reviews, 3, 101–113.

    Article  PubMed  Google Scholar 

  • Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11, 5–6.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (1998). The central executive: A concept and some misconceptions. Journal of the International Neuropsychological Society, 4, 523–526.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4, 829–839.

    Article  PubMed  Google Scholar 

  • Bar-Gad, I., Morris, G., & Bergman, H. (2003). Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71, 439–473.

    Article  PubMed  Google Scholar 

  • Bedard, M. A., Agid, Y., Chouinard, S., Fahn, S., & Korczyn, A. (2003). Mental and behavioral dysfunction in movement disorders. Totowa, NJ: Humana Press.

    Book  Google Scholar 

  • Bradshaw, J. L. (2001). Developmental disorders of the frontostriatal system: Neuropsychological, neuropsychiatric and evolutionary perspectives. Philadelphia: Taylor & Francis, Inc.

    Google Scholar 

  • Brass, S. D., Benedict, R. H., Weinstock-Guttman, B., Munschauer, F., & Bakshi, R. (2006). Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis. Multiple Sclerosis, 12, 437–444.

    Article  PubMed  Google Scholar 

  • Buchsbaum, B. R., Olsen, R. K., Koch, P., & Berman, K. F. (2005). Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron, 48, 687–697.

    Article  PubMed  Google Scholar 

  • Cavedini, P., Gorini, A., & Bellodi, L. (2006). Understanding obsessive-compulsive disorder: Focus on decision making. Neuropsychological Review, 16, 3–15.

    Article  Google Scholar 

  • Chang, C., Crottaz-Herbette, S., & Menon, V. (2007). Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage, 34, 1253–1269.

    Article  PubMed  Google Scholar 

  • Cincotta, C. M., & Seger, C. A. (2007). Dissociation between striatal regions while learning to categorize via feedback and via observation. Journal of Cognitive Neuroscience, 19, 249–265.

    Article  PubMed  Google Scholar 

  • D’Esposito, M. (2008). Working memory. In G. Goldenberg & B. Miller (Eds.), Neuropsychology and behavioral neurology (pp. 237–247). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Map** the network for planning: A correlational PET activation study with the Tower of London task. Brain, 122(Pt. 10), 1973–1987.

    Article  PubMed  Google Scholar 

  • Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.

    Article  PubMed  Google Scholar 

  • Denckla, M. B., & Reiss, A. L. (1997). Prefrontal-subcortical circuits in developmental disorders. In N. A. Krasnegor, G. R. Lyon, & P. S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 283–294). Baltimore: P. H. Brookes.

    Google Scholar 

  • Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: A resting state fMRI study. Cerebral Cortex, doi: 10.1093/cercor/bhn041.

    Google Scholar 

  • Dujardin, K., Blairy, S., Defebvre, L., Krystkowiak, P., Hess, U., Blond, S., et al. (2004). Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 202–208.

    PubMed  Google Scholar 

  • Filoteo, J. V., Maddox, W. T., Simmons, A. N., Ing, A. D., Cagigas, X. E., Matthews, S., et al. (2005). Cortical and subcortical brain regions involved in rule-based category learning. Neuroreport, 16, 111–115.

    Article  PubMed  Google Scholar 

  • Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.

    Article  PubMed  Google Scholar 

  • Frank, M. J. (2006). Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.

    Article  PubMed  Google Scholar 

  • Frank, M. J., & Claus, E. D. (2006). Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113, 300–326.

    Article  PubMed  Google Scholar 

  • Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective & Behavioral Neuroscience, 1, 137–160.

    Article  Google Scholar 

  • Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309–1312.

    Article  PubMed  Google Scholar 

  • Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32, 1583–1599.

    Article  PubMed  Google Scholar 

  • Frank, M. J., Scheres, A., & Sherman, S. J. (2007). Understanding decision-making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1641–1654.

    Article  PubMed  Google Scholar 

  • Frank, M. J., Seeberger, L. C., O’Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism science, 306, 1940–1943.

    Google Scholar 

  • Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355, 1771–1788.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (1997). The prefrontal cortex—Anatomy, physiology and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Gabrieli, J. D. (1996). Memory systems analyses of mnemonic disorders in aging and age-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 93, 13534–13540.

    Google Scholar 

  • Garavan, H., Kelley, D., Rosen, A., Rao, S. M., & Stein, E. A. (2000). Practice-related functional activation changes in a working memory task. Microscopy Research and Technique, 51, 54–63.

    Article  PubMed  Google Scholar 

  • Geday, J., Ostergaard, K., Johnsen, E., & Gjedde, A. (2007). STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Human Brain Map**, doi: 10.1002/hbm.20486.

    Google Scholar 

  • Gerton, B. K., Brown, T. T., Meyer-Lindenberg, A., Kohn, P., Holt, J. L., Olsen, R. K., et al. (2004). Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia, 42, 1781–1787.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1992). Working memory and the mind. Scientific American, 267, 110–117.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 1445–1453.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M. (2001). Neural networks: Neural systems V: Basal ganglia. American Journal of Psychiatry, 158, 21.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M. (2005). The basal ganglia: Learning new tricks and loving it. Current Opinion in Neurobiology, 15, 638–644.

    Article  PubMed  Google Scholar 

  • Gruber, A. J., Dayan, P., Gutkin, B. S., & Solla, S. A. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. Journal of Computational Neuroscience, 20, 153–166.

    Article  PubMed  Google Scholar 

  • Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., et al. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Brain Research. Cognitive Brain Research, 23, 207–220.

    Article  PubMed  Google Scholar 

  • Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. Neuroimage, 36, 943–954.

    Article  PubMed  Google Scholar 

  • Hazy, T. E., Frank, M. J., & O’reilly, R. C. (2006). Banishing the homunculus: Making working memory work. Neuroscience, 139, 105–118.

    Article  PubMed  Google Scholar 

  • Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1601–1613.

    Article  PubMed  Google Scholar 

  • Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST) manual, revised and expanded. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews. Neuroscience, 9, 467–479.

    Article  PubMed  Google Scholar 

  • Heimer, L., Van Hoesen, G. W., Trimble, M., & Zahm, D. S. (2008). Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic Press.

    Google Scholar 

  • Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Review, 80, 953–978.

    Google Scholar 

  • Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. Journal of Neurophysiology, 53, 292–308.

    PubMed  Google Scholar 

  • Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92, 427–437.

    Article  PubMed  Google Scholar 

  • Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1573–1583.

    Article  PubMed  Google Scholar 

  • Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5, 95–110.

    Article  PubMed  Google Scholar 

  • Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474.

    Article  PubMed  Google Scholar 

  • Keri, S. (2008). Interactive memory systems and category learning in schizophrenia. Neuroscience and Biobehavioral Reviews, 32, 206–218.

    Article  PubMed  Google Scholar 

  • Kim, S. H., Park, K. H., Sung, Y. H., Lee, Y. B., Park, H. M., & Shin, D. J. (2008). Dementia mimicking a sudden cognitive and behavioral change induced by left globus pallidus infarction: Review of two cases. Journal of the Neurological Sciences, 272(1–2):178–182.

    Google Scholar 

  • Knowlton, B. J. (2002). The role of the basal ganglia in learning and memory. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 143–153). New York: The Guilford Press.

    Google Scholar 

  • Lawrence, A. D., Watkins, L. H., Sahakian, B. J., Hodges, J. R., & Robbins, T. W. (2000). Visual object and visuospatial cognition in Huntington’s disease: Implications for information processing in corticostriatal circuits. Brain, 123(Pt. 7), 1349–1364.

    Article  PubMed  Google Scholar 

  • Leung, H. C., Oh, H., Ferri, J., & Yi, Y. (2007). Load response functions in the human spatial working memory circuit during location memory updating. Neuroimage, 35, 368–377.

    Article  PubMed  Google Scholar 

  • Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Jouranl of Neuroscience, 19, 755–760.

    Article  Google Scholar 

  • Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43, 823–832.

    Article  PubMed  Google Scholar 

  • Linden, D. E. (2007). The working memory networks of the human brain. Neuroscientist, 13, 257–267.

    Article  PubMed  Google Scholar 

  • Lombardi, W. J., Gross, R. E., Trepanier, L. L., Lang, A. E., Lozano, A. M., & Saint-Cyr, J. A. (2000). Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson’s disease: Support for the existence of cognitive circuits in the human pallidum. Brain, 123(Pt. 4), 746–758.

    Article  PubMed  Google Scholar 

  • McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V., & Redgrave, P. (2005). Subcortical loops through the basal ganglia. Trends in Neuroscience, 28, 401–407.

    Article  Google Scholar 

  • McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.

    Article  PubMed  Google Scholar 

  • Menon, V., Anagnoson, R. T., Glover, G. H., & Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. Neuroreport, 11, 3641–3645.

    Article  PubMed  Google Scholar 

  • Middleton, F. A. (2003). Fundamental and clinical evidence for basal ganglia influences on cognition. In M. Bedard, Y. Agid, S. Chouinard, S. Fahn, & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 13–34). Totowa, NJ: Humana Press, Inc.

    Chapter  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1996). Basal ganglia and cerebellar output influences non-motor function. Molecular Psychiatry, 1, 429–433.

    PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42, 183–200.

    Article  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2001). Revised neuroanatomy of frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 44–58). New York: The Guilford Press.

    Google Scholar 

  • Miller, R. (2008). A theory of the basal ganglia and their disorders. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.

    Article  PubMed  Google Scholar 

  • Mink, J. W. (2003). The Basal Ganglia and involuntary movements: Impaired inhibition of competing motor patterns. Archives of Neurology, 60, 1365–1368.

    Article  PubMed  Google Scholar 

  • Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21, 7733–7741.

    PubMed  Google Scholar 

  • Muller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139, 51–58.

    Article  PubMed  Google Scholar 

  • Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84, 289–300.

    PubMed  Google Scholar 

  • Obwegeser, A. A., Uitti, R. J., Lucas, J. A., Witte, R. J., Turk, M. F., & Wharen, R. E., Jr. (2000). Predictors of neuropsychological outcome in patients following microelectrode-guided pallidotomy for Parkinson’s disease. Journal of Neurosurgery, 93, 410–420.

    Article  PubMed  Google Scholar 

  • Parent, A., & Cicchetti, F. (1998). The current model of basal ganglia organization under scrutiny. Movement Disorders, 13, 199–202.

    Article  PubMed  Google Scholar 

  • Petrides, M., Alivisatos, B., Evans, A. C., & Meyer, E. (1993). Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proceedings of the National Academy of Sciences of the United States of America, 90, 873–877.

    Google Scholar 

  • Ponzi, A. (2008). Dynamical model of salience gated working memory, action selection and reinforcement based on basal ganglia and dopamine feedback. Neural Networks, 21, 322–330.

    Article  PubMed  Google Scholar 

  • Ranganath, C. (2006). Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neuroscience, 139, 277–289.

    Article  PubMed  Google Scholar 

  • Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M., et al. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport, 8, 1987–1993.

    Article  PubMed  Google Scholar 

  • Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306–320.

    Article  PubMed  Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.

    Article  PubMed  Google Scholar 

  • Ricciardi, E., Bonino, D., Gentili, C., Sani, L., Pietrini, P., & Vecchi, T. (2006). Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience, 139, 339–349.

    Article  PubMed  Google Scholar 

  • Richardson, J. T. E., Engle, R. W., Hasher, L., Logie, R. H., Stoltzfus, E. R., & Zacks, R. T. (1996). Working memory and human cognition. New York: Oxford University Press.

    Book  Google Scholar 

  • Ross, R. G., Harris, J. G., Olincy, A., & Radant, A. (2000). Eye movement task measures inhibition and spatial working memory in adults with schizophrenia, ADHD, and a normal comparison group. Psychiatry Research, 95, 35–42.

    Article  PubMed  Google Scholar 

  • Saint-Cyr, J. A. (2003a). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9, 103–127.

    PubMed  Google Scholar 

  • Saint-Cyr, J. A. (2003b). Neuropsychology for movement disorders neurosurgery. The Canadian Journal of Neurological Sciences, 30(Suppl. 1), S83–S93.

    PubMed  Google Scholar 

  • Saint-Cyr, J. A., & Taylor, A. E. (1992). The mobilization of procedural learning: The “key signature” of the basal ganglia. In L. R. Squire & N. Butters (Eds.), The neuropsychology of memory (2nd ed., pp. 188–202). New York: Guilford Press.

    Google Scholar 

  • Salmon, D. P., Heindel, W. C., & Hamilton, J. M. (2001). Cognitive abilities mediated by frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 114–150). New York: The Guilford Press.

    Google Scholar 

  • Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115, 101–130.

    Article  PubMed  Google Scholar 

  • Schlosser, R. G., Wagner, G., & Sauer, H. (2006). Assessing the working memory network: Studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience, 139, 91–103.

    Article  PubMed  Google Scholar 

  • Seger, C. A. (2006). The basal ganglia in human learning. The Neuroscientist, 12, 285–290.

    Article  PubMed  Google Scholar 

  • Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265–278.

    Article  PubMed  Google Scholar 

  • Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25, 2941–2951.

    Article  PubMed  Google Scholar 

  • Seger, C. A., & Cincotta, C. M. (2006). Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cerebral Cortex, 16, 1546–1555.

    Article  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    Article  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (2003). Executive control and thought. In L.Squire, F. E. Bloom, M. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 1377–1394). New York: Academic Press.

    Google Scholar 

  • Spinks, R., Nopoulos, P., Ward, J., Fuller, R., Magnotta, V. A., & Andreasen, N. C. (2005). Globus pallidus volume is related to symptom severity in neuroleptic naive patients with schizophrenia. Schizophrenia Research, 73, 229–233.

    Article  PubMed  Google Scholar 

  • Squire, L. R., Clark, R. E., & Bayley, P. J. (2004). Medial temporal lobe function and memory. In M. S. Gazzaniga (Ed.), The cognitive neurosciences III (3rd ed., pp. 691–708). Cambridge, MA: MIT Press.

    Google Scholar 

  • Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.

    Article  PubMed  Google Scholar 

  • Stuss, D. T. (2007). New approaches to prefrontal lobe testing. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 292–305). New York: Guilford Press.

    Google Scholar 

  • Toates, F. (2006). A model of the hierarchy of behaviour, cognition, and consciousness. Consciousness and Cognition, 15, 75–118.

    Article  PubMed  Google Scholar 

  • Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G. (1995). Functional brain imaging studies of cortical mechanisms for memory. Science, 270, 769–775.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). ’What’ and ’where’ in the human brain. Current Opinion in Neurobiology, 4, 157–165.

    Article  PubMed  Google Scholar 

  • Utter, A. A., & Basso, M. A. (2008). The basal ganglia: An overview of circuits and function. Neuroscience and Biobehavioral Reviews, 32, 333–342.

    Article  PubMed  Google Scholar 

  • Valera, E. M., Faraone, S. V., Biederman, J., Poldrack, R. A., & Seidman, L. J. (2005). Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 439–447.

    Article  PubMed  Google Scholar 

  • Veltman, D. J., Rombouts, S. A., & Dolan, R. J. (2003). Maintenance versus manipulation in verbal working memory revisited: An fMRI study. Neuroimage, 18, 247–256.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503.

    Article  PubMed  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3, 255–274.

    Article  Google Scholar 

  • Winstanley, C. A., Baunez, C., Theobald, D. E., & Robbins, T. W. (2005). Lesions to the subthalamic nucleus decrease impulsive choice but impair autosha** in rats: The importance of the basal ganglia in Pavlovian conditioning and impulse control. European Journal of Neuroscience, 21, 3107–3116.

    Article  PubMed  Google Scholar 

  • Wurtz, R. H., & Hikosaka, O. (1986). Role of the basal ganglia in the initiation of saccadic eye movements. Progress in Brain Research, 64, 175–190.

    Article  PubMed  Google Scholar 

  • Yokochi, F., Okiyama, R., Taniguchi, M., Takahashi, H., Hasegawa, N., & Hamada, I. (2001). Relationship between lesion location and the outcome of pallidotomy for Parkinson’s disease. Journal of Neurology, 248(Suppl. 3), III32–III36.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard F. Koziol .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koziol, L.F., Budding, D.E. (2009). The Basal Ganglia: Beyond the Motor System—From Movement to Thought. In: Subcortical Structures and Cognition. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84868-6_2

Download citation

Publish with us

Policies and ethics

Navigation