Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Map**s on Unbounded Sets

  • Chapter
Pareto Optimality, Game Theory And Equilibria

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 17))

  • 3975 Accesses

Based on the notion of asymptotically contractive map** due to Penot [16], we propose in this paper a new method for the study of existence of fixed points for nonexpansive map**s defined on unbounded sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Browder, F.E.: Nonexpansive Nonlinear Operators in a Banach Space. Proc. Nat. Acad. Sci., 54, 1041–1044 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Browder, F.E.: Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces. Proc. Symp. Pure Math., 18, Amer. Math. Soc., Providence (1976)

    Google Scholar 

  3. Ciorănescu, I.: Geometry of Banach Spaces. Duality Map**s and Nonlinear Problems. Kluwer Academic Publishers (1990)

    Google Scholar 

  4. Gatica, J.A., Kirk, W.A.: Fixed-Point Theorems for Contraction Map**s with Applications to Nonexpansive and Pseudo-Contractive Map**s. Rocky Mountain J. Math., 4, 69–79 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goebel, K., Kirk, W.A.: Topics in Metric Fixed-point Theory. Cambridge University Press, Cambridge, U.K. (1990)

    MATH  Google Scholar 

  6. Ghde, D.: Zum Prinzip der Kontraktiven Abbildung. Math. Nach., 30, 251–258 (1965)

    Article  Google Scholar 

  7. Isac, G: The Scalar Asymptotic Derivative and the Fixed-Point Theory on Cones. Nonliner Anal. Related Topics, 2, 92–97 (1999)

    MathSciNet  Google Scholar 

  8. Isac, G., Németh, S.Z.: Scalar Derivatives and Scalar Asymptotic Derivatives: Properties and Some Applications. J. Math. Anal. Appl., 278, 149–170 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Isac, G., Németh, S.Z.: Scalar Derivatives and Scalar Asymptotic Derivatives. An Altman type fixed-point theorem on convex cones and some applications. J. Math. Anal. Appl., 290, 452–468 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kirk, W.A.: A Fixed-Point Theorem for Map**s which do not Increase Distances. Amer. Math. Monthly, 72, 1004–1006 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kirk, W.A.: Nonexpansive Map**s and Asymptotic Regularity. Nonlinear Anal., Theory Methods, Appl., 40, 323–332 (2002)

    Article  MathSciNet  Google Scholar 

  12. Kirk, W.A., Yanez, C.M., Shin, S.S: Asymptotically Nonexpansive Map**s. Nonlinear Anal., Theory Methods, Appl., 33, 1–12 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luc, D.T.: Recessively Compact Sets: Uses and Properties. St-Valued Anal., 10, 15–35 (2002)

    Article  MATH  Google Scholar 

  14. Németh, S.Z.: A Scalar Derivative for Vector Functions. Riv. Mat. Pura Appl., 10, 7–24 (1992)

    MATH  Google Scholar 

  15. Németh, S.Z.: Scalar Derivatives and Spectral Theory. Mathematica, 35, 49–58 (1993)

    MATH  Google Scholar 

  16. Penot, J.P.: A Fixed-Point Theorem for Asymptotically Contractive Map**s. Proc. Amer. Math. Soc., 131, 2371–2377 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rhoades, B.E.: A Comparison of Various Definitions of Contractive Map**s. Trans. Amer. Math. Soc., 226, 257–290 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rouhani, B.D., Kirk, W.A.: Asymptotic Properties of Non-Expansives Iterations in Reflexive Spaces. J. Math. Anal. Appl., 236, 281–289 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rus, I.A., Petrusel, A., Petrusel, G.: Fixed-Point Theory (1950–2000). Romanian Contributions. House of the Book of Science, Cluj-Napoca (2002)

    Google Scholar 

  20. Singh, S., Watson, B., Srivastava, P.: Fixed-Point Theory and Best Approximation. The KKM-map Principle. Kluwer Academic Publishers (1997)

    Google Scholar 

  21. Takahashi, W.: Nonlinear Functional Analysis (Fixed-point Theory and its Applications). Yokohama Publishers (2000)

    Google Scholar 

  22. Zeidler, E.: Nonlinear Functional Analysis and its Applications, Part 1: Fixed-Point Theorems. Springer-Verlag, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Isac, G. (2008). Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Map**s on Unbounded Sets. In: Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds) Pareto Optimality, Game Theory And Equilibria. Springer Optimization and Its Applications, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77247-9_5

Download citation

Publish with us

Policies and ethics

Navigation