A 2-D Spring Model for the Simulation of Nonlinear Hysteretic Elasticity

  • Chapter
Universality of Nonclassical Nonlinearity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Delsanto, A.S. Gliozzi, M. Hirsekorn, and M. Nobili, “A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media,” Ultrasonics in press (2006).

    Google Scholar 

  2. P.P. Delsanto and M. Scalerandi, “A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces,” J. Acoust. Soc. Am. 104(5), 2584-2591 (1998).

    Article  ADS  Google Scholar 

  3. P.P. Delsanto, R.B. Mignogna, M. Scalerandi, and R.S. Schechter, “Simulation of ultrasonic pulse propagation in complex media,” in New Perspectives on Problems in Classical and Quantum Physics, edited by P. P. Delsanto and A. W. Saenz (Gordon and Breach Science Publishers, New Delhi, 1997), pp. 51-74.

    Google Scholar 

  4. P.P. Delsanto, T. Whitcombe, H.H. Chaskelis, and R.B. Mignogna, “Connection machine simulation of ultrasonic wave propagation in materials. I: The one-dimensional case,” Wave Motion 16, 65-80 (1992).

    Article  MathSciNet  Google Scholar 

  5. P.P. Delsanto, R.S. Schechter, H.H. Chaskelis, R.B. Mignogna, and R. Kline, “Connection machine simulation of ultrasonic wave propagation in materials. II: The two-dimensional case,” Wave Motion 20,295-314 (1994).

    Article  MATH  Google Scholar 

  6. P.P. Delsanto, R.S. Schechter, and R.B. Mignogna, “Connection machine simulation of ultrasonic wave propagation in materials. III: The three-dimensional case,” Wave Motion 26, 329-339 (1997).

    Article  MATH  Google Scholar 

  7. M. Scalerandi, P. P. Delsanto, C. Chiroiu, and V. Chiroiu, “Numerical simulation of pulse propagation in nonlinear 1-D media,” J. Acoust. Soc. Am. 106(5), 2424-2430 (1999).

    Article  ADS  Google Scholar 

  8. Chapter 16 of this book.

    Google Scholar 

  9. P.P. Delsanto and M. Scalerandi, “Modeling nonclassical nonlinearity, conditioning and slow dynamics effects in mesoscopic elastic materials,” Phys. Rev. B 68(6), 064107 (2003).

    Article  ADS  Google Scholar 

  10. M. Scalerandi, P. Delsanto, and P. Johnson, “Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments,” J. Phys. D: Appl. Phys. 36, 288-293 (2003).

    Article  ADS  Google Scholar 

  11. T. Yamamoto, “Acoustic propagation in the ocean with a poro-elastic bottom,” J. Acoust. Soc. Am. 73(5),1587-1596 (1983).

    Article  ADS  Google Scholar 

  12. L. A. Ostrovsky and P. A. Johnson, “Dynamic nonlinear elasticity in geomaterials,” Rivista del Nuovo Cimento C 24(7), 1-46 (2001).

    Google Scholar 

  13. Chapter 17 of this book.

    Google Scholar 

  14. M. Scalerandi, E. Ruffino, P.P. Delsanto, P.A. Johnson, and K.E.-A. Van Den Abeele, “Non-linear techniques for ultrasonic micro-damage diagnostics: A simulation approach,” in Review of Progress in Quantitative Nondestructive Evaluation, Vol. 19B, edited by D.O. Thompson and D.E. Chimenti (1999), pp. 1393-1399.

    Google Scholar 

  15. M. Scalerandi, P.P. Delsanto, V. Agostini, K. Van Den Abeele, and P.A. Johnson, “Local interaction simulation approach to modeling nonclassical, nonlinear elastic behavior in solids,” J. Acoust. Soc. Am. 113(6), 3049-3059 (2003).

    Article  ADS  Google Scholar 

  16. Chapter 12 of this book.

    Google Scholar 

  17. J.W. Spencer, “Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion,” J. Geophys. Res. 86, 1803-1812 (1981).

    Article  ADS  Google Scholar 

  18. J.O.A. Robertsson, J.O. Blanch, and W.W. Symes, “Viscoelastic finite difference modeling,” Geophysics 59(9), 1444-1456 (1994).

    Article  ADS  Google Scholar 

  19. O. Bou Matar, S. Dos Santos, J. Fortineau, L. Haumesser, and F. Van Der Meulen, “Pseudo-spectral simulation of 1D nonlinear propagation in heterogeneous elastic media,” in press (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hirsekorn, M., Gliozzi, A., Nobili, M., Van Den Abeele, K. (2006). A 2-D Spring Model for the Simulation of Nonlinear Hysteretic Elasticity. In: Delsanto, P.P. (eds) Universality of Nonclassical Nonlinearity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35851-2_18

Download citation

Publish with us

Policies and ethics

Navigation