Metal Carbenes and Carbynes: The Taming of “Non-existing” Molecules

  • Chapter
  • First Online:
Landmarks in Organo-Transition Metal Chemistry

Part of the book series: Profiles in Inorganic Chemistry ((PIIC))

  • 1262 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In English: “I think the ways by which people gain knowledge, are almost as wonderful as the nature of the things themselves.”

  2. 2.

    See [32], pp. 8–11.

  3. 3.

    At this point, the reader should be reminded that there are two systems of nomenclature for carbon–metal double and triple bonds. In contrast to Fischer, who named any unit of the general composition CR(R’) a carbene, and analogously any CR unit a carbyne, independent whether or not R and R’ contains a heteroatom such as oxygen, sulfur, nitrogen or chlorine [2831, 43], Schrock later preferred the names alkylidene for CR(R’) and alkylidyne for CR, provided that R and R’ are either hydrogen, an alkyl, aryl or trimethylsilyl group. With regard to alkylidene he argued that a primary alkylidene CHR is derived from a primary alkyl ligand CH2R and a secondary alkylidene CR2 from a secondary alkyl ligand CHR2 [84]. Nevertheless, up to now both terms carbenes/alkylidenes and carbynes/alkylidynes occur as synonyms in the literature. In this monograph, the terms carbene and carbyne have been preferentially used.

  4. 4.

    It is interesting to note, that apart from the impressive series of transition metal complexes with monodentate NHCs, tetracarbene palladium(II) and platinum(II) as well as hexacarbene iron(III) complexes with bi- and tridentate chelating carbene ligands were prepared.

  5. 5.

    Editor’s page of Chemical & Engineering News, October 10, 2005.

References

  1. M. Regitz, Stable Carbenes – Illusion or Reality, Angew. Chem. Int. Ed. Engl. 30, 674–676 (1991).

    Google Scholar 

  2. J. P. A. Dumas, and E. M. Peligot, Mémoire sur l’Esprit de bois et sur les divers Composés Éthérés qui en proviennent, Ann. Chim. Phys. 58, 5–74 (1835).

    Google Scholar 

  3. J. R. Partington, A History of Chemistry (Macmillan, London, 1964, Vol. 4, p. 353).

    Google Scholar 

  4. W. Kirmse, Carbene, Carbenoide und Carbenanaloge (Verlag Chemie, Weinheim, 1969).

    Google Scholar 

  5. H. Staudinger, Über aliphatische Diazoverbindungen und Ketene, Helv. Chim. Acta 5, 87–103 (1922).

    CAS  Google Scholar 

  6. Houben-Weyl, Methoden der Organischen Chemie (Ed. M. Regitz, Thieme Verlag, Stuttgart, 1989, Vol. E19b).

    Google Scholar 

  7. J. Hine, Divalent Carbon (The Ronald Press, New York, 1964).

    Google Scholar 

  8. W. Kirmse, Carbene Chemistry, 2. Ed. (Academic Press, New York, 1971).

    Google Scholar 

  9. M. Jones, and R. A. Moss, Carbenes I (Wiley, New York, 1971).

    Google Scholar 

  10. R. A. Moss, and M. Jones, Carbenes II (Wiley, New York, 1975).

    Google Scholar 

  11. H.-J. Schönherr, and H.-W. Wanzlick, 1.3.4.5-Tetraphenyl-imidazoliumperchlorat, Liebigs Ann. Chem. 731, 176–179 (1970).

    Google Scholar 

  12. H.-W. Wanzlick, and H.-J. Schönherr, Direct Synthesis of a Mercury Salt-Carbene Complex, Angew. Chem. Int. Ed. Engl. 7, 141–142 (1968).

    CAS  Google Scholar 

  13. K. Öfele, 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom – Ein neuer Übergangsmetall-Carben-Komplex, J. Organomet. Chem. 12, P42–P43 (1968).

    Google Scholar 

  14. A. J. Arduengo, III, R. L. Harlow, and M. Kline, A Stable Crystalline Carbene, J. Am. Chem. Soc. 113, 361–363 (1991).

    CAS  Google Scholar 

  15. A. J. Arduengo, III, and R. Krafczyk, Auf der Suche nach stabilen Carbenen, Chemie in unserer Zeit 32, 6–14 (1998).

    CAS  Google Scholar 

  16. A. J. Arduengo, III, Looking for Stable Carbenes: The Difficulty in Starting Anew, Acc. Chem. Res. 32, 913–921 (1999).

    CAS  Google Scholar 

  17. M. Regitz, Nucleophilic Carbenes: An Incredible Renaissance, Angew. Chem. Int. Ed. Engl. 35, 725–728 (1996).

    CAS  Google Scholar 

  18. W. A. Herrmann, and C. Köcher, N-Heterocyclic Carbenes, Angew. Chem. Int. Ed. Engl. 36, 2162–2187 (1997).

    CAS  Google Scholar 

  19. D. Bourissou, O. Guerret, F. P. Gabbai, and G. Bertrand, Stable Carbenes, Chem. Rev. 100, 39–91 (2000).

    CAS  Google Scholar 

  20. G. Bertrand (Ed.) Carbene Chemistry: From Fleeting Intermediates to Powerful Reagents (Marcel Decker, New York, 2002).

    Google Scholar 

  21. G. W. Nyce, S. Csihony, R. M. Waymouth, and J. L. Hedrick, A General and Versatile Approach to Thermally Generated N-Heterocyclic Carbenes, Chem. Eur. J. 10, 4073–4079 (2004).

    CAS  Google Scholar 

  22. F. E. Hahn, Heterocyclic Carbenes, Angew. Chem. Int. Ed. 45, 1348–1352 (2006).

    CAS  Google Scholar 

  23. A. J. Arduengo, III, J. R. Goerlich, R. Krafczyk, and W. J. Marshall, 1,3,4,5-Tetraphenylimidazol-2-ylidene: The Realization of Wanzlick’s Dream, Angew. Chem. Int. Ed. 37, 1963–1965 (1998).

    CAS  Google Scholar 

  24. E. O. Fischer, Early Days of Transition-Metal Carbene Chemistry, in: Advances in Metal Carbene Chemistry (Ed. U. Schubert, NATO NSI Series Vol. 269, Kluwer Academic Publ., Dordrecht, 1989, pp. 1–9).

    Google Scholar 

  25. E. O. Fischer, and A. Maasböl, Tungsten Carbonyl-carbene Complex, Angew. Chem. Int. Ed. Engl. 3, 580 (1964).

    Google Scholar 

  26. R. Aumann, and E. O. Fischer, Addition of Isocyanides to Transition Metal Carbene Complexes, Angew. Chem. Int. Ed. Engl. 6, 879–880 (1967).

    CAS  Google Scholar 

  27. O. S. Mills, and A. D. Redhouse, Crystal and Molecular Structure of Phenylmethoxycarbenepentacarbonylchromium, J. Chem. Soc. A 1968, 642–647.

    Google Scholar 

  28. E. O. Fischer, Structure, Bonding and Reactivity of (Stable) Transition Metal Carbonyl Carbene Complexes, Pure Appl. Chem. 24, 407–423 (1970).

    CAS  Google Scholar 

  29. E. O. Fischer, Recent Aspects of Transition Metal Carbonyl Carbene Complexes, Pure Appl. Chem. 30, 353–372 (1972).

    CAS  Google Scholar 

  30. E. O. Fischer, Auf dem Weg zu Carben- und Carbin-Komplexen, Angew. Chem. 86, 651–663 (1974) [Nobel Lecture].

    CAS  Google Scholar 

  31. E. O. Fischer, On the Way to Carbene and Carbyne Complexes, Adv. Organomet. Chem. 14, 1–32 (1976).

    CAS  Google Scholar 

  32. H. Fischer, The Synthesis of Carbene Complexes, in: Transition Metal Carbene Complexes (Eds. K. H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissl, U. Schubert, and K. Weiss, Verlag Chemie, Weinheim, 1983, pp. 4–8).

    Google Scholar 

  33. H. Werner, Substitutionsreaktionen von Metallcarbonyl-Komplexen des Chroms, Molybdäns und Wolframs; einige neue kinetische und mechanistische Aspekte, J. Organomet. Chem. 94, 285–302 (1975).

    CAS  Google Scholar 

  34. C. F. Bernasconi, Develo** the Physical Organic Chemistry of Fischer Carbene Complexes, Chem. Soc. Rev. 26, 299–307 (1997).

    CAS  Google Scholar 

  35. K. Weiss, and E. O. Fischer, Der Pentacarbonyl(phenylcarben)chrom(0)-Rest als Aminoschutzgruppe für Peptidsynthesen, Chem. Ber. 106, 1277–1284 (1973).

    CAS  Google Scholar 

  36. K. Weiss, and E. O. Fischer, Pentacarbonyl(organylcarben)chrom– und –wolfram-Reste als Aminoschutzgruppen für Peptidsynthesen, Chem. Ber. 109, 1868–1886 (1976).

    CAS  Google Scholar 

  37. E. O.Fischer, and K. H. Dötz, Synthese von Cyclopropanderivaten aus Vinyläthern mit Hilfe von Übergangsmetall-Carbonyl-Carben-Komplexen, Chem. Ber. 105, 3966–3973 (1972).

    CAS  Google Scholar 

  38. M. D. Cooke, and E. O. Fischer, Proof of the Absence of a Free Carbene in the Preparation of a Cyclopropane from a Metal-Carbene Complex, J. Organomet. Chem. 56, 279–284 (1973).

    CAS  Google Scholar 

  39. C. P. Casey, and R. L. Anderson, Thermolysis of (2-Oxacyclopentylidene)-pentacarbonylchromium(0): Evidence Against Free Carbenes in Thermal Decomposition of Metal-Carbene Complexes, J. Chem Soc., Chem. Comm. 1975, 895–896.

    Google Scholar 

  40. E. O. Fischer, and H.-J. Beck, Transfer of Methoxy(phenyl)carbene Ligands from Molybdenum to Iron and Nickel, Angew. Chem. Int. Ed. Engl. 9, 72–73 (1970).

    CAS  Google Scholar 

  41. A. De Renzi, and E. O. Fischer, 1,1-Dihalo-2-phenylvinyl Methyl Ethers from [Phenyl-(methoxy)carbene]pentacarbonylchromium(0) and Phenyl(trihalomethyl)mercurials, Inorg. Chim. Acta 8, 185–189 (1974).

    Google Scholar 

  42. E. O. Fischer, G. Kreis, C. G. Kreiter, J. Müller, G. Huttner, and H. Lorenz, trans-Halo[alkyl(aryl)carbyne]tetracarbonyl Complexes of Chromium, Molybdenum and Tungsten. A New Complex Type with Transition Metal-Carbon Triple Bond, Angew. Chem. Int. Ed. Engl. 12, 564–565 (1973).

    Google Scholar 

  43. G. Huttner, H. Lorenz, and W. Gartzke, Transition Metal-Carbon Triple Bonds, Angew. Chem. Int. Ed. Engl. 13, 609–610 (1974).

    Google Scholar 

  44. E. O. Fischer, and U. Schubert, Darstellung, Eigenschaften und Reaktionsverhalten von Übergangsmetallcarbonyl-Carbin-Komplexen, J. Organomet. Chem. 100, 59–81 (1975).

    CAS  Google Scholar 

  45. E. O. Fischer, U. Schubert, and H. Fischer, Selectivity and Specificity in Chemical Reactions of Carbene and Carbyne Metal Complexes, Pure Appl. Chem. 50, 857–870 (1978).

    CAS  Google Scholar 

  46. H. P. Kim, and R. J. Angelici, Transition Metal Complexes with Terminal Carbyne Ligands, Adv. Organomet. Chem. 27, 51–111 (1987).

    CAS  Google Scholar 

  47. A. Mayr, Comments on the Chemistry of Low-Valent Alkylidyne Complexes of the Group 6 Transition Metals, Comments Inorg. Chem. 10, 227–266 (1990).

    CAS  Google Scholar 

  48. A. Mayr, and H. Hoffmeister, Recent Advances in the Chemistry of Metal-Carbon Triple Bonds, Adv. Organomet. Chem. 32, 227–324 (1991).

    CAS  Google Scholar 

  49. H. Fischer, P. Hofmann, F. R. Kreissl, R. R. Schrock, U. Schubert, and K. Weiss, Carbyne Complexes (VCH Publishers, Weinheim-New York, 1988).

    Google Scholar 

  50. K. Öfele, Pentacarbonyl(2,3-diphenylcyclopropenylidene)chromium(0), Angew. Chem. Int. Ed. Engl. 7, 950 (1968).

    Google Scholar 

  51. C. P.Casey, and T. J. Burkhardt, (Diphenylcarbene)pentacarbonyltungsten(0), J. Am. Chem. Soc. 95, 5833–5834 (1973).

    CAS  Google Scholar 

  52. C. P.Casey, T. J. Burkhardt, C. A. Bunnell, and J. C. Calabrese, Synthesis and Crystal Structure of Diphenylcarbene(pentacarbonyl)tungsten(0), J. Am. Chem. Soc. 99, 2127–2134 (1977).

    CAS  Google Scholar 

  53. E. O. Fischer, W. Held, and F. R. Kreissl, Synthese von Pentacarbonylalkylchromaten(I) und –wolframaten(I), Chem. Ber. 110, 3842–3848 (1977).

    CAS  Google Scholar 

  54. E. M. Badley, J. Chatt, R. L. Richards, and G. A. Sim, The Reactions of Isocyanide Complexes Platinum(II): a Convenient Route to Carbene Complexes, Chem. Comm. 1969, 1322–1323.

    Google Scholar 

  55. J. S. Miller, and A. L. Balch, Preparation and Reactions of Tetrakis(methyl isocyanide) Complexes of Divalent Nickel, Palladium, and Platinum, Inorg. Chem. 11, 2069–2074 (1972).

    CAS  Google Scholar 

  56. L. Tschugajeff, M. Skanawy-Grigorjewa, and A. Posnjak, Über die Hydrazin-Carbylamin-Komplexe des Platins, Z. anorg. allg. Chem. 148, 37–42 (1925). [preliminary communication: J. Russ. Chem. Soc. 47, 776 (1915)].

    Google Scholar 

  57. G. Rouschias, and B. L. Shaw, The Chemistry and Structure of Chugaev’s Salt and Related Compounds containing a Cyclic Carbene Ligand, J. Chem. Soc. A 1971, 2097–2104.

    Google Scholar 

  58. A. Burke, A. L. Balch, and J. H.Enemark, Palladium and Platinum Complexes Resulting from the Addition of Hydrazine to Coordinated Isocyanide, J. Am. Chem. Soc. 92, 2555–2557 (1970).

    CAS  Google Scholar 

  59. D. J. Cardin, B. Cetinkaya, M. F. Lappert, L. J. Manojlovic-Muir, and K. W. Muir, An Electron-rich Olefin as a Source of Co-ordinated Carbene; Synthesis of trans-PtCl2[C(NPhCH2)2]PEt3, Chem. Comm. 1971, 400–401.

    Google Scholar 

  60. D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Transition Metal-Carbene Complexes, Chem. Rev. 72, 545–574 (1972).

    CAS  Google Scholar 

  61. D. J. Cardin, B. Cetinkaya, M. J. Doyle, and M. F. Lappert, Chemistry of Transition-Metal Carbene Complexes and Their Role as Reaction Intermediates, Chem. Soc. Rev. 2, 99–144 (1972).

    Google Scholar 

  62. M. F. Lappert, The Coordination Chemistry of Bivalent Group IV Donors; Nucleophilic-Carbene and Dialkylstannylene Complexes, J. Organomet. Chem. 100, 139–159 (1975).

    CAS  Google Scholar 

  63. M. F. Lappert, The Coordination Chemistry of Electron-rich Alkenes (Enetetramines), J. Organomet. Chem. 358, 185–214 (1988).

    CAS  Google Scholar 

  64. M. F. Lappert, Contributions to the Chemistry of Carbenemetal Chemistry, J. Organomet. Chem. 690, 5467–5473 (2005).

    CAS  Google Scholar 

  65. M. F. Lappert, and A. J. Oliver, A Three-Fragment Oxidative Addition Reaction as a Route to Transition Metal Carbene Complexes: Imidoyl Halides and Rhodium(I) Compounds as Precursors for Rhodium(III) Carbenes, J. Chem Soc., Chem. Comm. 1972, 274–275.

    Google Scholar 

  66. P. B. Hitchcock, M. F. Lappert, G. M. McLaughlin, and A. J. Oliver, Complexes of Imidoyl Chloride and Rhodium(I) Precursors, and the Crystal and Molecular Structure of Carbonyltri-iodo-[α-(N-methyl-α-methyliminobenzylamino)benzylidene-N,C]rhodium, J. Chem. Soc., Dalton Trans. 1974, 68–74.

    Google Scholar 

  67. B. Cetinkaya, M. F. Lappert, and K. Turner, Three-fragment Oxidative Addition of Chloroform-iminium or –amidinium Chlorides to RhI or PtII Substrates; Complexes of the Secondary Carbene CHNMe2, J. Chem Soc., Chem. Comm. 1972, 851–852.

    Google Scholar 

  68. B. Cetinkaya, M. F. Lappert, G. M. McLaughlin, and K. Turner, Chloromethylene-ammonium Chlorides. Electron-Rich Carbenoids as Precursors to Secondary Carbene Metal Complexes; Crystal and Molecular Structure of Trichloro(dimethylamino-methylene)bis(triethylphosphine)rhodium(III), J. Chem. Soc., Dalton Trans. 1974, 1591–1599.

    Google Scholar 

  69. M. J. Doyle, M. F. Lappert, G. M. McLaughlin, and J. McMeeking, The Synthesis of Alkylideneamido(carbene)rhodium(I) Complexes and Related Chemistry; the Crystal and Molecular Structure of trans-Rh[NC(CF3)2][C(NMeCH2)2](PPh3)2, J. Chem. Soc., Dalton Trans. 1974, 1494–1501.

    Google Scholar 

  70. P. J. Davidson, and M. F. Lappert, Stabilisation of Metals in a Low Co-ordination Environment using the Bis(trimethylsilyl)methyl Ligand; Coloured SnII and PbII Alkyls, M[CH(SiMe3)2]2, J. Chem Soc., Chem. Comm. 1973, 317.

    Google Scholar 

  71. J. Chatt, A New Structure for Olefin Co-Ordination Compounds, Research 4, 180–183 (1950).

    Google Scholar 

  72. F. G. A. Stone, Leaving No Stone Unturned (American Chemical Society, Washington, DC, 1993, p. 209).

    Google Scholar 

  73. R. R. Schrock, An “Alkylcarbene” Complex of Tantalum by Intramolecular α-Hydrogen Abstraction, J. Am. Chem. Soc. 96, 6796–6797 (1974).

    CAS  Google Scholar 

  74. G. L. Juvinall, σ-Bonded Alkyl Compounds of Niobium and Tantalum. Trimethyldichloroniobium and Trimethyldichlorotantalum, J. Am. Chem. Soc. 86, 4202–4203 (1964).

    CAS  Google Scholar 

  75. R. R.Schrock, and P. Meakin, Pentamethyl Complexes of Niobium and Tantalum, J. Am. Chem. Soc. 96, 5288–5290 (1974).

    CAS  Google Scholar 

  76. R. R. Schrock, Preparation and Characterization of M(CH3)5 (M = Nb, Ta) and Ta(CH2C6H5)5 and Evidence for Decomposition by α-Hydrogen Atom Abstraction, J. Organomet. Chem. 122, 209–225 (1976).

    CAS  Google Scholar 

  77. R. R.Schrock, The Reaction of Niobium and Tantalum Neopentylidene Complexes with the Carbonyl Function, J. Am. Chem. Soc. 98, 5399–5400 (1976).

    CAS  Google Scholar 

  78. R. R. Schrock, Multiple Metal-Carbon Bonds for Catalytic Metathesis Reactions, Angew. Chem. Int. Ed. 45, 3748–3759 (2006) [Nobel Lecture].

    CAS  Google Scholar 

  79. L. Li, M. Hung, and Z. Xue, Direct Observation of (Me3ECH2)5Ta (E = C, Si) as the Precursors to (Me3ECH2)3TaCHEMe3 and (Me3SiCH2)2Ta(μ-CSiMe3)2Ta(CH2SiMe3)2. Kinetic and Mechanistic Studies of the Formation of Alkylidene and Alkylidyne Ligands, J. Am. Chem. Soc. 117, 12746–12750 (1995).

    CAS  Google Scholar 

  80. L. J. Guggenberger, and R. R. Schrock, A Tantalum Carbyne Complex, J. Am. Chem. Soc. 97, 2935 (1975).

    CAS  Google Scholar 

  81. R. R. Schrock, The First Isolable Transition Metal Methylene Complex and Analogs. Characterization, Mode of Decomposition, and Some Simple Reactions, J. Am. Chem. Soc. 97, 6577–6578 (1975).

    CAS  Google Scholar 

  82. R. R. Schrock, and L. J. Guggenberger, Structure of Bis(cyclopentadienyl)methylmethylenetantalum and the Estimated Barrier to Rotation about the Tantalum–Methylene Bond, J. Am. Chem. Soc. 97, 6578–6579 (1975).

    Google Scholar 

  83. R. R. Schrock, and P. R. Sharp, Preparation and Characterization of Ta(η5-C5H5)2(CH2)(CH3), a Study of its Decomposition, and Some Simple Reactions, J. Am. Chem. Soc. 100, 2389–2399 (1978).

    CAS  Google Scholar 

  84. R. R. Schrock, Alkylidene Complexes of Niobium and Tantalum, Acc. Chem. Res. 12, 98–104 (1979).

    CAS  Google Scholar 

  85. R. R. Schrock, L. W. Messerle, C. D. Wood, and L. J. Guggenberger, Preparation and Characterization of Several Alkylidene Complexes, M(η5-(C5H5)2(alkylidene)X (M = Ta or Nb), and the X-Ray Structure of Ta(η5-(C5H5)2(CHC6H5)(CH2C6H5). An Investgation of Alkylidene Ligand Rotation, J. Am. Chem. Soc. 100, 3793–3800 (1978).

    CAS  Google Scholar 

  86. P. W. Jolly, and R. Pettit, Evidence for a Novel Metal-Carbene System, J. Am. Chem. Soc. 88, 5044–5045 (1966).

    CAS  Google Scholar 

  87. W. A. Herrmann, B. Reiter, and H. Biersack, Einbau von Methylene in Mangan-Komplexe, J. Organomet. Chem. 97, 245–251 (1975).

    CAS  Google Scholar 

  88. W. A. Herrmann, The Methylene Bridge, Adv. Organomet. Chem. 20, 159–263 (1982).

    CAS  Google Scholar 

  89. W. A. Herrmann, Reaktionen aliphatischer Diazoverbindungen mit thermolabilen Mangan-Komplexen, Chem. Ber. 108, 486–499 (1975).

    CAS  Google Scholar 

  90. W. A. Herrmann, Organometallic Syntheses with Diazoalkanes, Angew. Chem. Int. Ed. Engl. 17, 800–813 (1978).

    Google Scholar 

  91. J. D. Fellmann, G. A. Rupprecht, C. D. Wood, and R. R. Schrock, Bisneopentylidene Complexes of Niobium and Tantalum, J. Am. Chem. Soc. 100, 5964–5966 (1978).

    CAS  Google Scholar 

  92. M. Brookhart, and M. L. H. Green, Carbon–Hydrogen–Transition Metal Bonds, J. Organomet. Chem. 250, 395–408 (1983).

    CAS  Google Scholar 

  93. M. Brookhart, M. L. H. Green, and L.-L. Wong, Carbon–Hydrogen–Transition Metal Bonds, Progr. Inorg. Chem. 36, 1–124 (1988).

    CAS  Google Scholar 

  94. G. A. Rupprecht, L. W. Messerle, J. D. Fellmann, and R. R. Schrock, Octahedral Alkylidene Complexes of Niobium and Tantalum by Ligand-Promoted α Abstraction, J. Am. Chem. Soc. 102, 6236–6244 (1980).

    CAS  Google Scholar 

  95. D. N. Clark, and R. R. Schrock, Tungsten and Molybdenum Neopentylidyne and Some Tungsten Neopentylidene Complexes, J. Am. Chem. Soc. 100, 6774–6776 (1978).

    CAS  Google Scholar 

  96. R. R. Schrock, High-Oxidation-State Molybdenum and Tungsten Alkylidyne Complexes, Acc. Chem. Res. 19, 342–348 (1986).

    CAS  Google Scholar 

  97. J. S. Murdzek, and R. R. Schrock, High Oxidation State Alkylidyne Complexes, in: Carbyne Complexes (Eds. H. Fischer, P. Hofmann, F. R. Kreissl, R. R. Schrock, U. Schubert, and K. Weiss, VCH Publishers, Weinheim-New York, 1988, p. 147–203).

    Google Scholar 

  98. L. G. McCullough, R. R. Schrock, J. C. Dewan, and J. S. Murdzek, Preparation of Trialkoxymolybdenum(VI) Alkylidyne Complexes. Their Reactions with Acetylenes, and the X-Ray Structure of Mo[C3(CMe3)2][OCH(CF3)2]2(C5H5N)2, J. Am. Chem. Soc. 107, 5987–5998 (1985).

    CAS  Google Scholar 

  99. R. R. Schrock, High Oxidation State Multiple Metal–Carbon Bonds, Chem. Rev. 102, 145–179 (2002).

    CAS  Google Scholar 

  100. R. R. Schrock, High Oxidation State Alkylidene and Alkylidyne Complexes, Chem. Comm. 2005, 2773–2777.

    Google Scholar 

  101. R. A. Andersen, M. H. Chisholm, J. F. Gibson, W. W. Reichert, I. P.Rothwell, and G. Wilkinson, (Trimethylsilyl)methylidene and (Trimethylsilyl)methylidyne Compounds of Molydenum and Tungsten: (Me3SiCH2)3MCSiMe3 (M = Mo, W) and (Me3SiCH2)3MoCHSiMe3, Inorg. Chem. 20, 3934–3936 (1981).

    CAS  Google Scholar 

  102. T. J. Katz, and S. J. Lee, Initiation of Acetylene Polymerization by Metal Carbenes, J. Am. Chem. Soc. 102, 422–424 (1980).

    CAS  Google Scholar 

  103. J. Kress, M. Wesolek, J.-P. Le Ny, and J. A. Osborn, Molecular Complexes for Efficient Metathesis of Olefins. The Oxo-Ligand as a Catalyst-Cocatalyst Bridge and the Nature of the Active Species, J. Chem. Soc., Chem. Comm. 1981, 1039–1040.

    Google Scholar 

  104. J. Kress, M. Wesolek, and J. A. Osborn, Tungsten(IV) Carbenes for the Metathesis of Olefins. Direct Observation and Identification of the Chain Carrying Carbene Complexes in a Highly Active Catalyst System, J. Chem. Soc., Chem. Comm. 1982, 514–516.

    Google Scholar 

  105. R. R. Schrock, M. L. Listemann, and L. G. Sturgeoff, Metathesis of Tungsten-Tungsten Triple Bonds with Acetylenes and Nitriles To Give Alkylidyne and Nitrido Complexes, J. Am. Chem. Soc. 104, 4291–4293 (1982).

    CAS  Google Scholar 

  106. M. L. Listemann, and R. R. Schrock, A General Route to Tri-tert-butoxytungsten Alkylidyne Complexes. Scission of Acetylenes by Tungsten Hexa-tert-butoxide, Organometallics 4, 74–83 (1985).

    CAS  Google Scholar 

  107. F. Huq, W. Mowat, A. C. Skapski, and G. Wilkinson, Crystal Structure of Bis-μ-(trimethylsilylmethylidyne)tetrakis(trimethylsilylmethyl)diniobium(V). A New Type of Carbon Bridging Group, Chem. Comm. 1971, 1477–1478.

    Google Scholar 

  108. M. H. Chisholm, J. C. Huffman, and I. P. Rothwell, Addition of Alkynes to Hexaalkoxydimolybdenum (MM) Compounds and Structure of μ-Ethyne-hexaisopropoxydipyridinodimolybdenum, J. Am. Chem. Soc. 103, 4245–4246 (1981).

    CAS  Google Scholar 

  109. M. R. Churchill, J. W. Ziller, L. McCullough, S. F. Pedersen, and R. R. Schrock, W(η5-C5H5)[C(Ph)C(CMe3)C(Ph)]Cl2: A Molecule Having a Localized, Nonplanar, Fluxional Metallacyclobutadiene Ring, Organometallics 2, 1046–1048 (1983).

    CAS  Google Scholar 

  110. M. R. Churchill, and W. J. Youngs, X-Ray Crystal Structure of W(CCMe3)(CHCMe3)(CH2CMe3)(Me2PCH2CH2PMe2), an Ordered Five-co-ordinate Tungsten(VI) Complex with Metal–Alkyl, Metal–Alkylidene, and Metal–Alkylidyne Linkages, J. Chem. Soc., Chem. Comm. 1979, 321–322.

    Google Scholar 

  111. S. J. Holmes, D. N. Clark, H. W. Turner, and R. R. Schrock, α-Hydride Elimination from Methylene and Neopentylidene Ligands. Preparation and Protonation of Tungsten(IV) Methylidyne and Neopentylidyne Complexes, J. Am. Chem. Soc. 104, 6322–6329 (1982).

    CAS  Google Scholar 

  112. P. R. Sharp, S. J. Holmes, R. R. Schrock, M. R. Churchill, and H. J. Wasserman, Tungsten Methylidyne Complexes, J. Am. Chem. Soc. 103, 965–966 (1981).

    CAS  Google Scholar 

  113. K.-Y. Shih, K. Totland, S. W. Seidel, and R. R. Schrock, Spontaneous Loss of Molecular Hydrogen from Tungsten(IV) Alkyl Complexes to Give Alkylidyne Complexes, J. Am. Chem. Soc. 116, 12103–12104 (1994).

    CAS  Google Scholar 

  114. H. Fischer, The Synthesis of Fischer-Type Carbyne Complexes, in: Carbyne Complexes (Eds. H. Fischer, P. Hofmann, F. R. Kreissl, R. R. Schrock, U. Schubert, and K. Weiss, VCH Publishers, Weinheim-New York, 1988, pp. 1–38).

    Google Scholar 

  115. F. R. Kreissl, Selected Reactions of Carbyne Complexes, in: Carbyne Complexes (Eds. H. Fischer, P. Hofmann, F. R. Kreissl, R. R. Schrock, U. Schubert, and K. Weiss, VCH Publishers, Weinheim-New York, 1988, pp. 99–146).

    Google Scholar 

  116. A. J. Hartshorn, and M. F. Lappert, The Role of C-Chlorocarbenemetal Complexes in Carbene– and Carbyne–Metal Complex Chemistry; Experiments with [Cr(CO)5{C(Cl)NMe2}] and [Cr(CO)5(CNMe2)]+, J. Chem. Soc., Chem. Comm. 1976, 761–762.

    Google Scholar 

  117. E. O. Fischer, W. Kleine, and F. R. Kreissl, Chlordiäthylaminocarben-pentacarbonyl-chrom, J. Organomet. Chem. 107, C23–C25 (1976).

    CAS  Google Scholar 

  118. H. Fischer, A. Mosch, and W. Kleine, Unusual Selectivity in the Thermal Rearrangement-Elimination Reaction of a Carbene Complex in Solution and in the Solid State, Angew. Chem. Int. Ed. Engl. 17, 842–843 (1978).

    Google Scholar 

  119. B. D. Dombeck, and R. J. Angelici, Electrophilic and Oxidative Addition Reactions of Tungsten Thiocarbonyl Complexes, Inorg. Chem. 15, 2397–2402 (1976).

    Google Scholar 

  120. A. J. L. Pombeiro, and R. L. Richards, Reactivity of Carbyne and Carbene Complexes of Molybdenum and Tungsten, Transition Met. Chem. 5, 55–59 (1980).

    CAS  Google Scholar 

  121. A. J. L. Pombeiro, D. L. Hughes, C. J. Pickett, and R. L. Richards, The Aminocarbyne Ligand CNH2: Metal-centred Synthesis from a Cyanosilane, Preparation and X-Ray Structure of trans-[ReCl(CNH2)(Ph2PCH2CH2PPh2)2]BF4, J. Chem. Soc., Chem. Comm. 1986, 246–247.

    Google Scholar 

  122. H. Fischer, and E. O. Fischer, Umsetzung von Lithiumbenzoyl-pentacarbonyl-wolframat mit Triphenylphosphindihalogeniden; ein neuer Weg zu Carbin-Komplexen, J. Organomet. Chem. 69, C1–C3 (1974).

    CAS  Google Scholar 

  123. A. Mayr, G. A. McDermott, and A. M. Dorries, Synthesis of (Carbyne)metal Complexes by Oxide Abstraction from Acyl Ligands, Organometallics 4, 608–610 (1985).

    CAS  Google Scholar 

  124. G. A. McDermott, A. M. Dorries, and A. Mayr, Synthesis of Carbyne Complexes of Chromium, Molybdenum, and Tungsten by Formal Oxide Abstraction from Acyl Ligands, Organometallics 6, 925–931 (1987).

    CAS  Google Scholar 

  125. E. O. Fischer, A. Ruhs, and F. R. Kreissl, Carbonylsubstitutionen an trans-Bromotetracarbonyl(phenylcarbin)-Komplexen von Chrom und Wolfram, Chem. Ber. 110, 805–815 (1977).

    CAS  Google Scholar 

  126. A. C. Filippou, and E. O. Fischer, Auf dem Weg zu den ersten, carbonylfreien, neutralen und kationischen Diethylaminocarbin-Komplexen des Wolframs, J. Organomet. Chem. 365, 317–323 (1989).

    CAS  Google Scholar 

  127. R. Hoffmann, Building Bridges Between Inorganic and Organic Chemistry, Angew. Chem. Int. Ed. Engl. 21, 711–725 (1982) [Nobel Lecture].

    Google Scholar 

  128. F. G. A. Stone, Metal–Carbon and Metal–Metal Multiple Bonds as Ligands in Transition-Metal Chemistry: The Isolobal Connection, Angew. Chem. Int. Ed. Engl. 23, 89–99 (1984).

    Google Scholar 

  129. M. Green, J. C. Jeffery, S. J. Porter, H. Razay, and F. G. A. Stone, Triangulo-Metal Complexes Containing Tungsten with Iron, Cobalt, Rhodium, or Nickel and a Cap** Tolylidyne Ligand; Crystal Structure of the Complex [RhFeW(μ3-CC6H4Me-4)(μ-CO)(CO)5(η-C5H5)(η-C9H7)], J. Chem Soc., Dalton Trans. 1982, 2475–2483.

    Google Scholar 

  130. G. A. Carriedo, J. A. K. Howard, and F. G. A. Stone, Complexes of the Pentamethylcyclopentadienylcopper Group and the Crystal Structures of the Compounds [CuPtW(μ3-CC6H4Me-4)(CO)2(PMe3)2(η-C5H5)(η-C5Me5)] and [CuRh2(μ-CO)2(η-C5Me5)3], J. Chem Soc., Dalton Trans. 1984, 1555–1561.

    Google Scholar 

  131. T. V. Ashworth, M. J. Chetcuti, J. A. K. Howard, F. G. A. Stone, S. J. Wisbey, and P. Woodward, Synthesis of the Trimetal Compounds [M{W(μ-CC6H4Me-4)(CO)2(η-C5H5)}2] (M = Ni, Pd, or Pt) and the Crystal Structures of the Platinum and Nickel Complexes, J. Chem Soc., Dalton Trans. 1981, 763–770.

    Google Scholar 

  132. W. R. Roper, Platinum Group Metals in the Formation of Metal–Carbon Multiple Bonds, J. Organomet. Chem. 300, 167–190 (1986).

    CAS  Google Scholar 

  133. D. F. Christian, and W. R. Roper, Neutral, Cationic, and Dicationic Ruthenium(II) Complexes of the Secondary Carbenes CHNH(p-C6H4CH3) and CHN(CH3)(p-C6H4CH3), J. Organomet. Chem. 80, C35–C38 (1974).

    CAS  Google Scholar 

  134. T. J. Collins, and W. R. Roper, Thioformyl and Formyl Complexes of Osmium(II), J. Chem Soc., Chem. Comm. 1976, 1044–1045.

    Google Scholar 

  135. T. J. Collins, and W. R. Roper, Co-Ordinated Thioformaldehyde Monomer. Synthesis and Reactions of [Os(η2-CH2S)(CO)2(PPh3)2], J. Chem Soc., Chem. Comm. 1977, 901–902.

    Google Scholar 

  136. A. F. Hill, W. R. Roper, J. M. Waters, and A. H. Wright, A Mononuclear, Low-Valent, Electron-Rich Osmium Methylene Complex, J. Am. Chem. Soc. 105, 5939–5940 (1983).

    CAS  Google Scholar 

  137. M. A. Gallop, and W. R. Roper, Carbene and Carbyne Complexes of Ruthenium, Osmium, and Iridium, Adv. Organomet. Chem. 25, 121–198 (1986).

    CAS  Google Scholar 

  138. H. Werner, R. Flügel, B. Windmüller, A. Michenfelder, and J. Wolf, Synthesis and Reactions of Stable 16-Electron Osmium(0) Complexes [OsCl(NO)(PR3)2] Including the X-ray Crystal Structure of [OsCl2(NO)(η1-CHCCPh2)(P-i-Pr3)2], Organometallics 14, 612–618 (1995).

    CAS  Google Scholar 

  139. R. Flügel, B. Windmüller, O. Gevert, and H. Werner, Synthesis, Molecular Structure and Reactions of Stable Square-Planar 16-Electron Ruthenium(0) Complexes: trans-[RuCl(NO)(PR3)2], Chem. Ber. 129, 1007–1013 (1996).

    Google Scholar 

  140. P. J. Brothers, and W. R. Roper, Transition-Metal Dihalocarbene Complexes, Chem. Rev. 88, 1293–1326 (1988).

    CAS  Google Scholar 

  141. A. Geuther, Ueber die Zersetzung des Chloroforms durch alkoholische Kalilösung, Ann. Chem. Pharm. 123, 121–122 (1862).

    Google Scholar 

  142. M. Schmeisser, and H. Schröter, Darstellung des Dichlorcarbens CCl2 aus CCl4 und Kohlenstoff, Angew. Chem. 72, 349–350 (1960).

    CAS  Google Scholar 

  143. M. Schmeisser, H. Schröter, H. Schilder, J. Massone, and F. Rosskopf, Zur Frage der Isolierung von Dichlorcarben CCl2. Die Pyrolyse von Tetrachlorkohlenstoff und Tetrachloeäthylen bei 1200–1250° im Hochvakuum in Gegenwart von Aktivkohle, Chem. Ber. 95, 1648–1656 (1962).

    CAS  Google Scholar 

  144. G. Chu, R. A. Moss, and R. R. Sauers, Dichlorodiazirine: A Nitrogenous Precursor of Dichlorocarbene, J. Am. Chem. Soc. 127, 14206–14207 (2005).

    CAS  Google Scholar 

  145. D. Mansuy, M. Lange, J.-C. Chottard, P. G, P. Morliere, D. Brault, and M. Rougee, Reaction of Carbon Tetrachloride with 5,10,15,20-Tetraphenyl-porphinatoiron(II) [(TPP)FeII]: Evidence for the Formation of the Carbene Complex [(TPP)FeII(CCl2)], J. Chem. Soc., Chem. Comm. 1977, 648–649.

    Google Scholar 

  146. D. Mansuy, New Iron-Porphyrin Complexes with Metal–Carbon Bond – Biological Implications, Pure Appl. Chem. 52, 681–690 (1980).

    CAS  Google Scholar 

  147. D. Mansuy, J.-P. Lecomte, J.-C. Chottard, and J.-F. Bartoli, Formation of a Complex with a Carbide Bridge Between Two Iron Atoms from the Reaction of (Tetraphenylporphyrin)iron(II) with Carbon Tetraiodide, Inorg. Chem. 20, 3119–3121 (1981).

    CAS  Google Scholar 

  148. G. R. Clark, K. Marsden, W. R. Roper, and L. J. Wright, Carbonyl, Thiocarbonyl, Selenocarbonyl, and Tellurocarbonyl Complexes Derived from a Dihalocarbene Complex of Osmium, J. Am. Chem. Soc. 102, 1206–1207 (1980).

    CAS  Google Scholar 

  149. G. R. Clark, S. V. Hoskins, and W. R. Roper, Difluorocarbene Complexes of Ruthenium Derived from Trifluoromethyl Compounds. RuCl2(CF2)(CO)(PPh3)2, RuCl2(CFNMe2)(CO)(PPh3)2, RuCl2(CFOMe)(CO)(PPh3)2, and the Structure of Ru(CF3)(HgCF3)(CO)2(PPh3)2, J. Organomet. Chem. 234, C9–C12 (1982).

    CAS  Google Scholar 

  150. G. R. Clark, K. Marsden, C. E. F. Rickard, W. R. Roper, and L. J. Wright, Syntheses and Structures of the Chalcocarbonyl Complexes OsCl2(CO)(CE)(PPh3)2, J. Organomet. Chem. 338, 393–410 (1988).

    CAS  Google Scholar 

  151. H. Werner, E. O. Fischer, B. Heckl, and C. G. Kreiter, Kinetik und Mechanismus der Aminolyse von (Methoxyphenylcarben)pentacarbonylchrom(0) – eine Reaktion 4. Ordnung mit negativer Arrhenius-Aktivierungsenergie, J. Organomet. Chem. 28, 367–389 (1971).

    CAS  Google Scholar 

  152. G. R. Clark, K. Marsden, W. R. Roper, and L. J. Wright, An Osmium Carbyne Complex, J. Am. Chem. Soc. 102, 6570–6571 (1980).

    CAS  Google Scholar 

  153. G. R. Clark, C. M. Cochrane, K. Marsden, W. R. Roper, and L. J. Wright, Synthesis and some Reactions of a Terminal Carbyne Complex of Osmium. Crystal Structures of Os(CR)Cl(CO)(PPh3)2 and Os(C[AgCl]R)Cl(CO)(PPh3)2, J. Organomet. Chem. 315, 211–230 (1986).

    CAS  Google Scholar 

  154. L.-J. Baker, G. R. Clark, C. E. F. Rickard, W. R. Roper, S. D. Woodgate and L. J. Wright, Syntheses and Reactions of the Carbyne Complexes M(CR)Cl(CO)(PPh3)2 (M = Ru, Os; R = 1-Naphthyl, 2-Naphthyl. The Crystal Structures of [Os(C-1-naphthyl)(CO)2(PPh3)2]ClO4, Os( = CH-2-naphthyl))Cl2(CO)(PPh3)2, and Os(2-naphthyl)C1(CO)2(PPh3)2, J. Organomet. Chem. 551, 247–259 (1998).

    CAS  Google Scholar 

  155. R. S. Simons, and P. P. Power, (η5-C5H5)(CO)2MoGeC6H3-2,6-Mes2: A Transition-Metal Germylyne Complex, J. Am. Chem. Soc. 118, 11966–11967 (1996).

    CAS  Google Scholar 

  156. A. C. Filippou, A. I. Philippopoulos, P. Portius, and D. U. Neumann, Synthesis and Structure of the Germylyne Complexes trans-[X(dppe)2WGe(η1-Cp*)] (X = Cl, Br, I) and Comparison of the WE Bonds (E = C, Ge) with DFT Calculations, Angew. Chem. Int. Ed. 39, 2778–2781 (2000).

    CAS  Google Scholar 

  157. A. C. Filippou, P. Portius, and A. I. Philippopoulos, Molybdenum and Tungsten Germylyne Complexes of the General Formula trans-[X(dppe)2WGe(η1-Cp*)] (X = Cl, Br, I; dppe = Ph2PCH2CH2PPh2; Cp* = C5Me5): Synthesis, Molecular Structures, and Bonding Features of the Germylyne Ligand, Organometallics 21, 653–661 (2002).

    CAS  Google Scholar 

  158. A. C. Filippou, N. Weidemann, A. I. Philippopoulos, and G. Schnakenburg, Activation of Aryl Germanium(II) Chlorides by [Mo(PMe3)6] and [W(η2-CH2PMe2)H(PMe3)4]: A New Route to Metal-Germanium Triple Bonds, Angew. Chem. Int. Ed. 45, 5987–5991 (2006).

    CAS  Google Scholar 

  159. A. C. Filippou, G. Schnakenburg, A. I. Philippopoulos, and N. Weidemann, Ge2 Trapped by Triple Bonds Between Two Metal Centers: The Germylidyne Complexes trans, trans-[Cl(depe)2MGeGeM(depe)2Cl] (M = Mo, W) and Bonding Analyses of the MGeGeM Chain, Angew. Chem. Int. Ed. 44, 5979–5985 (2005).

    CAS  Google Scholar 

  160. G. Balázs, L. J. Gregoriaded, and M. Scheer, Triple Bonds Between Transition Metals and the Heavier Elements of Groups 14 and 15, Organometallics 26, 3058–3075 (2007).

    Google Scholar 

  161. T. R. Howard, J. B. Lee, and R. H. Grubbs, Titanium Metallacarbene–Metallacyclobutane Reactions: Stepwise Metathesis, J. Am. Chem. Soc. 102, 6876–6878 (1980).

    CAS  Google Scholar 

  162. T. M. Trnka, and R. H. Grubbs, The Development of L2X2RuCHR Olefin Meta-thesis Catalysts: An Organometallic Success Story, Acc. Chem. Res. 34, 18–29 (2001).

    Google Scholar 

  163. R.H. Grubbs, Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials, Angew. Chem. Int. Ed. 45, 3760–3765 (2006) [Nobel Lecture].

    CAS  Google Scholar 

  164. T. J. Katz, Metal Carbenes in Low Oxidation States as Initiators for Olefin Metathesis and Related Reactions, Angew. Chem. Int. Ed. 44, 3010–3019 (2005).

    CAS  Google Scholar 

  165. J.-L. Hérisson, and Y. Chauvin, Catalysis of Olefin Transformations by Tungsten Complexes. Telomerization of Cyclic Olefins in the Presence of Acyclic Olefins, Makromol. Chem. 141, 161–167 (1971).

    Google Scholar 

  166. S. T. Nguyen, L. K. Johnson, R. H. Grubbs, and J. W. Ziller, Ring-Opening Metathesis Polymerization (ROMP) of Norbornene by a Group VIII Carbene Complex in Protic Media, J. Am. Chem. Soc. 114, 3974–3975 (1992).

    CAS  Google Scholar 

  167. S. T. Nguyen, R. H. Grubbs, and J. W. Ziller, Synthesis and Activities of New Single-Component, Ruthenium-Based Olefin Metathesis Catalysts, J. Am. Chem. Soc. 115, 9858–9859 (1993).

    CAS  Google Scholar 

  168. T. E. Wilhelm, T. R. Belderrain, S. N. Brown, and R. H. Grubbs, Reactivity of Ru(H)(H2)Cl(PCy3)2 with Propargylic and Vinyl Chlorides: New Methodology to Give Metathesis-Active Ruthenium Carbenes, Organometallics 16, 3867–3869 (1997).

    CAS  Google Scholar 

  169. J. Wolf, W. Stüer, C. Grünwald, H. Werner, P. Schwab, and M. Schulz, Ruthenium Trichloride, Tricyclohexylphosphane, 1-Alkynes, Magnesium, Hydrogen, and Water – Ingredients of an Efficient One-Pot Synthesis of Ruthenium Catalysts for Olefin Metathesis, Angew. Chem. Int. Ed. 37, 1124–1126 (1998).

    CAS  Google Scholar 

  170. H. Werner, and J. Wolf, Synthesis of Rhodium and Ruthenium Carbene Complexes with a 16-Electron Count, in: Handbook of Metathesis, Vol. 1 (Ed. R. H. Grubbs, Wiley-VCH, Weinheim, 2003, Chap. 1.8).

    Google Scholar 

  171. S. T. Nguyen, and T. M. Trnka, The Discovery and Development of Well-Defined, Ruthenium-Based Olefin Metathesis Catalysts, in: Handbook of Metathesis, Vol. 1 (Ed. R. H. Grubbs, Wiley-VCH, Weinheim, 2003, Chap. 1.6).

    Google Scholar 

  172. P. Schwab, N. Mahr, J. Wolf, and H. Werner, Carbenerhodium Complexes with Diaryl- and Aryl(alkyl)carbenes as Ligands: The Missing Link in the Series of the Double Bond Systems trans-[RhCl{C(C) n RR’}(L)2] Where n = 0, 1, and 2, Angew. Chem. Int. Ed. Engl. 32, 1480–1482 (1993).

    Google Scholar 

  173. H. Werner, Success and Serendipity During Studies Aimed at Preparing Carbenerhodium(I) Complexes, J. Organomet. Chem. 500, 331–336 (1995).

    CAS  Google Scholar 

  174. P. Schwab, M. B. France, J. W. Ziller, and R. H. Grubbs, A Series of Well-Defined Metathesis Catalysts – Synthesis of [RuCl2(CHR’)(PR3)2] and Their Reactions, Angew. Chem. Int. Ed. Engl. 34, 2039–2041 (1995).

    CAS  Google Scholar 

  175. P. Schwab, R. H. Grubbs, and J. W. Ziller, Synthesis and Applications of RuCl2(CHR’)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity, J. Am. Chem. Soc. 118, 100–110 (1996).

    Google Scholar 

  176. M. Oliván, and K. G. Caulton, The First Double Oxidative Addition of CH2Cl2 to a Metal Complex: Facile Synthesis of [Ru(CH2)Cl2{P(C6H11)3}2], Chem. Commun. 1997, 1733–1734.

    Google Scholar 

  177. S. M. Hansen, F. Rominger, M. Metz, and P. Hofmann, The First Grubbs-Type Metathesis Catalyst with cis Stereochemistry: Synthesis of [(η2-dtbpm)Cl2RuCHCHCMe2] from a Novel, Coordinatively Unsaturated Dinuclear Ruthenium Dihydride, Chem. Eur. J. 5, 557–566 (1999).

    CAS  Google Scholar 

  178. H. Werner, S. Jung, P. González-Herrero, K. Ilg, and J. Wolf, Vinylidene, Vinyl, and Carbene Ruthenium Complexes with Chelating Diphosphanes as Ligands, Eur. J. Inorg. Chem. 2001, 1957–1961.

    Google Scholar 

  179. E. L. Dias, S. T. Nguyen, and R. H. Grubbs, Well-Defined Ruthenium Olefin Meta-thesis Catalysts: Mechanism and Activity, J. Am. Chem. Soc. 119, 3887–3897 (1997).

    CAS  Google Scholar 

  180. M. S. Sanford, J. A. Love, and R. H. Grubbs, Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts, J. Am. Chem. Soc. 123, 6543–6554 (2001).

    CAS  Google Scholar 

  181. A. J. Arduengo, III, H. V. R. Dias, J. C. Calabrese, and F. Davidson, Homoleptic Carbene-Silver(I) and Carbene-Copper(I) Complexes, Organometallics 12, 3405–3409 (1993).

    CAS  Google Scholar 

  182. A. J. Arduengo, III, S. F. Gamper, J. C. Calabrese, and F. Davidson, Low-Coordinate Carbene Complexes of Nickel(0) and Platinum(0), J. Am. Chem. Soc. 116, 4391–4394 (1994).

    CAS  Google Scholar 

  183. T. Weskamp, V. P. W. Böhm, and W. A. Herrmann, N-Heterocyclic Carbenes: State of the Art in Transition-Metal Complex Synthesis, J. Organomet. Chem. 600, 12–22 (2000).

    CAS  Google Scholar 

  184. U. Kernbach, M. Ramm, P. Luger, and W. P. Fehlhammer, Angew. Chem. Int. Ed. Engl. 35, 310–312 (1996).

    CAS  Google Scholar 

  185. T. Weskamp, W. C. Schattenmann, M. Spiegler, and W. A. Herrmann, A Novel Class of Ruthenium Catalysts for Olefin Metathesis, Angew. Chem. Int. Ed. 37, 2490–2493 (1998).

    CAS  Google Scholar 

  186. J. Huang, E. D. Stevens, S. P. Nolan, and J. L. Petersen, Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand, J. Am. Chem. Soc. 121, 2674–2678 (1999).

    CAS  Google Scholar 

  187. T. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, and W. A. Herrmann, Highly Active Ruthenium Catalysts for Olefin Metathesis: The Synergy of N-Heterocyclic Carbenes and Coordinatively Labile Ligands, Angew. Chem. Int. Ed. 38, 2416–2419 (1999).

    CAS  Google Scholar 

  188. M. Scholl, T. M. Trnka, J. P. Morgan, and R. H. Grubbs, Increased Ring Closing Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with Imidazolin-2-ylidene Ligands, Tetrahedron Lett. 1999, 2247–2250.

    Google Scholar 

  189. M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands, Org. Lett. 1, 953–956 (1999).

    CAS  Google Scholar 

  190. C. W. Bielawski, and R. H. Grubbs, Highly Efficient Ring-Opening Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts Containing N-Heterocyclic Carbene Ligands, Angew. Chem. Int. Ed. 39, 2903–2906 (2000).

    CAS  Google Scholar 

  191. S. Stinson, Chem. Eng. News 78(No. 35), 6–7 (2000).

    Google Scholar 

  192. J. M. Berlin, S. D. Goldberg, and R. H. Grubbs, Highly Active Chiral Ruthenium Catalysts for Asymmetric Cross- and Ring-Opening Cross-Metathesis, Angew. Chem. Int. Ed. 45, 7591–7595 (2006).

    CAS  Google Scholar 

  193. W. Stüer, J. Wolf, H. Werner, P. Schwab, and M. Schulz, Carbynehydridoruthenium Complexes as Catalysts for the Selective, Ring-Opening Metathesis of Cyclopentene with Methyl Acrylate, Angew. Chem. Int. Ed. 37, 3421–3423 (1998).

    Google Scholar 

  194. P. Gonzàlez-Herrero, B. Weberndörfer, K. Ilg, J. Wolf, and H. Werner, The Sensitive Balance Between Five-Coordinate Carbene Ruthenium Complexes and Six-Coordinate Carbyne Ruthenium Complexes Formed from Ruthenium Vinylidene Precursors, Organometallics 20, 3672–3685 (2001).

    Google Scholar 

  195. J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus, Jr., and A. H. Hoveyda, A Recyclable Ru-Based Metathesis Catalyst, J. Am. Chem. Soc. 121, 791–799 (1999).

    CAS  Google Scholar 

  196. S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts, J. Am. Chem. Soc. 122, 8168–8179 (2000).

    CAS  Google Scholar 

  197. M. S. Sanford, L. M. Henling, M. W. Day, and R. H. Grubbs, Ruthenium-Based Four-Coordinate Olefin Metathesis Catalysts, Angew. Chem. Int. Ed. 39, 3451–3453 (2000).

    CAS  Google Scholar 

  198. J. N. Coalter,III, J. C. Bollinger, O. Eisenstein, and K. G. Caulton, R-Group Reversal of Isomer Stability for RuH(X)L2(CCHR) vs. Ru(X)L2(CCH2R): Access to Four-Coordinate Ruthenium Carbenes and Carbynes, New. J. Chem. 24, 925–927 (2000).

    CAS  Google Scholar 

  199. J. C. Conrad, D. Amoroso, P. Czechura, G. P. A. Yap, and D. E. Fogg, The First Highly Active, Halide-Free Ruthenium Catalyst for Olefin Metathesis, Organometallics 22, 3634–3636 (2003).

    CAS  Google Scholar 

  200. S. R. Caskey, M. H. Stewart, Y. J. Ahn, M. J. A. Johnson, J. L. C. Rowsell, and J. W. Kampf, Synthesis, Structure, and Reactivity of Four-, Five-, and Six-Coordinate Ruthenium Carbyne Complexes, Organometallics 26, 1912–1923 (2007).

    CAS  Google Scholar 

  201. R. G. Carlson, M. A. Gile, J. A. Heppert, M. H. Mason, D. R. Powell, D. Vander Velde, and J. M. Vilain, The Metathesis-Facilitated Synthesis of Terminal Ruthenium Carbide Complexes: A Unique Carbon Atom Transfer Reaction, J. Am. Chem. Soc. 124, 1580–1581 (2002).

    CAS  Google Scholar 

  202. A. Hejl, T. M. Trnka, M. W. Day, and R. H. Grubbs, Terminal Ruthenium Carbido Complexes as σ-Donor Ligands, Chem. Commun. 2002, 2524–2525.

    Google Scholar 

  203. P. E. Romero, W. E. Piers, and R. McDonald, Rapidly Initiating Ruthenium Olefin-Metathesis Catalysts, Angew. Chem. Int. Ed. 43, 6161–6165 (2004).

    CAS  Google Scholar 

  204. J. C. Peters, A. L. Odom, and C. C. Cummins, A Terminal Molybdenum Carbide Prepared by Methylidyne Deprotonation, Chem. Commun. 1997, 1995–1996.

    Google Scholar 

  205. C. C. Cummins, Reductive Cleavage and Related Reactions Leading to Molybdenum-Element Multiple Bonds: New Pathways Offered by Three-Coordinate Molybdenum(III), Chem. Commun. 1998, 1777–1786.

    Google Scholar 

  206. T. Agapie, P. L. Diaconescu, and C. C Cummins, Methine (CH) Transfer via a Chlorine Atom Abstraction/Benzene-Elimination Strategy: Molybdenum Methylidyne Synthesis and Elaboration to a Phosphaisocyanide Complex, Angew. Chem. Int. Ed. 45, 862–870 (2006).

    Google Scholar 

  207. C. C. Cummins, Terminal, Anionic Carbide, Nitride, and Phosphide Transition-Metal Complexes as Synthetic Entries to Low-Coordinate Phosphorus Derivatives, Angew. Chem. Int. Ed. 45, 862–870 (2006).

    Google Scholar 

  208. F. Z. Dörwald, Metal Carbenes in Organic Synthesis (Wiley-VCH, Weinheim, 1999).

    Google Scholar 

  209. K. H. Dötz, Carbene Complexes in Organic Synthesis, Angew. Chem. Int. Ed. Engl. 23, 587–608 (1984).

    Google Scholar 

  210. K. H. Dötz, Carbene Complexes in Stereoselective Cycloaddition Reactions, New J. Chem. 14, 433–445 (1990).

    Google Scholar 

  211. L. S. Hegedus, Synthesis of Amino Acids and Peptides Using Chromium Carbene Complex Photochemistry, Acc. Chem. Res. 28, 299–305 (1995).

    CAS  Google Scholar 

  212. D. F. Harvey, and D. M. Sigano, Carbene-Alkyne-Alkene Cyclization Reactions, Chem. Rev. 96, 271–288 (1996).

    CAS  Google Scholar 

  213. R. Aumann, and H. Nienaber, (1-Alkynyl)carbene Complexes: Tools for Synthesis, Adv. Organomet. Chem. 41, 163–242 (1997).

    CAS  Google Scholar 

  214. A. De Meijere, H. Schirmer, and M. Duetsch, Fischer Carbene Complexes as Chemical Multitalents: The Incredible Range of Products from Carbenepentacarbonyl Metal α,β-Unsaturated Complexes, Angew. Chem. Int. Ed. 39, 3964–4002 (2000).

    Google Scholar 

  215. K. H. Dötz, Synthesis of the Naphthol Skeleton from Pentacarbonyl[methoxy(phenyl)carbene]chromium(0) and Tolane, Angew. Chem. Int. Ed. Engl. 14, 644–645 (1975).

    Google Scholar 

  216. P. Hofmann, and M. Hämmerle, Mechanism of Dötz Reaction: Alkyne-Carbene Linkage to Chromacyclobutenes?, Angew. Chem. Int. Ed. Engl. 28, 908–910 (1989).

    Google Scholar 

  217. M. Torrent, M. Duran, and M. Solà, Density Functional Study on the Preactivation Scenario of the Dötz Reaction: Carbon Monoxide Dissociation versus Alkyne Addition as the First Reaction Step, Organometallics 17, 1492–1501 (1998).

    CAS  Google Scholar 

  218. M. F. Semmelhack, J. J. Bozell, T. Sato, W. Wulff, E. Spiess, and A. Zask, Synthesis of Nanaomycin A and Deoxyfrenolicin by Alkyne Cycloaddition to Chromium-Carbene Complexes, J. Am. Chem. Soc. 104, 5850–5852 (1982).

    CAS  Google Scholar 

  219. M. F. Semmelhack, J. J. Bozell, L. Keller, T. Sato, E. Spiess, W. Wulff, and A. Zask, Synthesis of Naphthoquinone Antibiotics by Intramolecular Alkyne Cycloaddition to Carbene-Chromium Complexes, Tetrahedron 41, 5803–5812 (1985).

    CAS  Google Scholar 

  220. K. H. Dötz, W. Straub, R. Ehlenz, K. Peseke, and R. Meisel, Carbene Complex Functionalized Sugars, Angew. Chem. Int. Ed. Engl. 34, 1856–1858 (1995).

    Google Scholar 

  221. K. H. Dötz, C. Jäkel, and W.-C. Haase, Organotransition Metal Modified Sugars, J. Organomet. Chem. 617–618, 119–132 (2001).

    Google Scholar 

  222. A. M. Rouhi, Olefin Metathesis: The Early Days, Chem. Eng. News 80(51), 34–38 (2002).

    Google Scholar 

  223. N. Calderon, H. Y. Chen, and K. W. Scott, Olefin Metathesis – A Novel Reaction for Skeletal Transformations of Unsaturated Hydrocarbons, Tetrahedron Lett., 1967, 3327–3329.

    Google Scholar 

  224. E. A. Ofstead, J. P. Ward, W. A. Judy, K. W. Scott, and N. Calderon, Olefin Metathesis I. Acyclic Vinylenic Hydrocarbons, J. Am. Chem. Soc. 90, 4133–4140 (1968).

    Google Scholar 

  225. G. S. Lewandos, and R. Pettit, On the Mechanism of the Metal-Catalyzed Disproportionation of Olefins, J. Am. Chem. Soc. 93, 7087–7088 (1971).

    CAS  Google Scholar 

  226. R. H. Grubbs, and T. K. Brunck, A Possible Intermediate in the Tungsten-Catalyzed Olefin Metathesis Reaction, J. Am. Chem. Soc. 94, 2538–2540 (1972).

    CAS  Google Scholar 

  227. Y. Chauvin, Olefin Metathesis: The Early Days, Angew. Chem. Int. Ed. 45, 3741–3747 (2006) [Nobel Lecture].

    CAS  Google Scholar 

  228. C. P. Casey, and T. J. Burkhardt, Reactions of (Diphenylcarbene)pentacarbonyl-tungsten(0) with Alkenes. Role of Metal-Carbene Complexes in Cyclopropanation and Olefin Metathesis Reactions, J. Am. Chem. Soc. 96, 7808–7809 (1974).

    CAS  Google Scholar 

  229. T. J. Katz, and J. McGinnis, The Mechanism of the Olefin Metathesis Reaction, J. Am. Chem. Soc. 97, 1592–1594 (1975).

    CAS  Google Scholar 

  230. T. K. Katz, The Olefin Metathesis Reaction, Adv. Organomet. Chem. 16, 283–318 (1977).

    CAS  Google Scholar 

  231. M. I. Bruce, Organometallic Chemistry of Vinylidene and Related Unsaturated Carbenes, Chem. Rev. 91, 197–257 (1991).

    CAS  Google Scholar 

  232. H. Werner, Organometallic Chemistry of Alkenes and Alkynes, J. Organomet. Chem. 475, 45–55 (1994).

    CAS  Google Scholar 

  233. H. Werner, Allenylidenes: Their Multifaceted Chemistry at Rhodium, Chem. Comm. 1997, 903–910.

    Google Scholar 

  234. M. I. Bruce, Transition Metal Complexes Containing Allenylidene, Cumulenylidene, and Related Ligands, Chem. Rev. 98, 2797–2858 (1998).

    CAS  Google Scholar 

  235. V. Cadierno, M. P. Gamasa, and J. Gimeno, Recent Developments in the Reactivity of Allenylidene and Cumulenylidene Complexes, Eur. J. Inorg. Chem. 2001, 571–591.

    Google Scholar 

  236. M. I. Bruce, Metal Complexes Containing Cumulenylidene Ligands, {L m M}C(C) n CRR’, Coord. Chem. Rev. 248, 1603–1625 (2004).

    CAS  Google Scholar 

  237. H. Fischer, and N. Szesni, π-Donor-Substituted Metallacumulenes of Chromium and Tungsten, Coord. Chem. Rev. 248, 1659–1677 (2004).

    CAS  Google Scholar 

  238. K. Ilg, and H. Werner, The First Structurally Characterized Metal Complex with the Molecular Unit MCCCCR2, Angew. Chem. Int. Ed. 39, 1632–1634 (2000) (M(C)4).

    CAS  Google Scholar 

  239. K. Ilg, and H. Werner, Closing the Gap between MC3 and MC5 Metallacumulenes: The Chemistry of the First Structurally Characterized Transition-Metal Complex with MCCCCR2 as the Molecular Unit, Chem. Eur. J. 8, 2812–2820 (2002) (M(C)4).

    CAS  Google Scholar 

  240. K. Venkatesan, F. J. Fernandez, O. Blacque, T. Fox, M. Alfonso, H. W. Schmalle, and H. Berke, A Facile and Novel Route to Unprecedented Manganese C4 Cumulenic Complexes, Chem. Comm. 2003, 2006–2008 (M(C)4).

    Google Scholar 

  241. D. Touchard, P. Haquette, A. Daridor, L. Toupet, and P. H. Dixneuf, First Isolable Pentatetraenylidene Metal Complex Containing the RuCCCCCPh2 Assembly. A Key Intermediate to Provide Functional Allenylidene Complexes, J. Am. Chem. Soc. 116, 11157–11158 (1994) (M(C)5).

    CAS  Google Scholar 

  242. R. W. Lass, P. Steinert, J. Wolf, and H. Werner, Synthesis and Molecular Structure of the First Neutral Transition-Metal Complex Containing a Linear MCCCCCR2 Chain, Chem. Eur. J. 2, 19–23 (1996) (M(C)5).

    CAS  Google Scholar 

  243. G. Roth, and H. Fischer, Complexes with Diamino-Substituted Unsaturated C3 and C5 Ligands: First Group 6 Pentatetraenylidenes and New Allenylidene Complexes, Organometallics 15, 1139–1145 (1996) (M(C)5).

    CAS  Google Scholar 

  244. M. Dede, M. Drexler, and H. Fischer, Heptahexaenylidene Complexes: Synthesis and Characterization of the First Complexes with an MCCCCCCCR2 Moiety (M = Cr, W), Organometallics 26, 4294–4299 (2007).

    CAS  Google Scholar 

  245. C. Bruneau, and P. H. Dixneuf, Metal Vinylidenes in Catalysis, Acc. Chem. Res. 32, 311–323 (1999).

    CAS  Google Scholar 

  246. H. Katayama, and F. Ozawa, Vinylideneruthenium Complexes in Catalysis, Coord. Chem. Rev. 248, 1703–1715 (2004).

    CAS  Google Scholar 

  247. C. Bruneau, and P. H. Dixneuf, Metal Vinylidenes and Allenylidenes in Catalysis: Applications in Anti-Markovnikov Additions to Terminal Alkynes and Alkene Metathesis, Angew. Chem. Int. Ed. 45, 2176–2203 (2006).

    CAS  Google Scholar 

  248. R. B. King, and M. S. Saran, Metal Complexes with Terminal Dicyanomethylenecarbene Ligands formed by Chlorine Migration Reactions, J. Chem. Soc., Chem. Comm. 1972, 1053–1053.

    Google Scholar 

  249. E. O. Fischer, H. J. Kalder, A. Frank, F. H. Köhler, and G. Huttner, 3-Dimethylamino-3-phenylallenylidene, a New Ligand on the Pentacarbonylchromium and –tungsten Framework, Angew. Chem. Int. Ed. Engl. 15, 623–624 (1976).

    Google Scholar 

  250. H. Berke, Simple Synthesis of Dicarbonyl(η-cyclopentadienyl)(3,3-di-tert-butylallenylidene)manganese, Angew. Chem. Int. Ed. Engl. 15, 624 (1976).

    Google Scholar 

  251. A. Höhn, and H. Werner, Carbyne-Iridium Complexes: Evidence for an Equilibrium Between Alkenylidene(hydrido) and Carbyne Isomers, Angew. Chem. Int. Ed. Engl. 25, 737–738 (1986).

    Google Scholar 

  252. H. Werner, K. Ilg, R. Lass, and J. Wolf, Iridium-Containing Cumulenes: How to Prepare and How to Use, J. Organomet. Chem. 661, 137–147 (2002).

    CAS  Google Scholar 

  253. C. Copéret, and J.-M. Basset, Strategies to Immobilize Well-Defined Olefin Metathesis Catalysts: Supported Homogeneous Catalysis vs. Surface Organometallic Chemistry, Adv. Synth. Catal. 349, 78–92 (2007).

    Google Scholar 

  254. D. J. Cardin, Protagonists in Chemistry, Inorg. Chim. Acta 360, 1245–1247 (2007).

    CAS  Google Scholar 

  255. Y. Chauvin, Telephone Interview, 5th of October 2005; Published on the Official Web Site of the Nobel Foundation (Copyright Nobel Web AB 2008).

    Google Scholar 

  256. P. Ahlberg, Presentation Speech, Stockholm, 10th of December 2005 (Copyright Nobel Web AB 2005).

    Google Scholar 

  257. Y. Chauvin, Autobiography, in: Les Prix Nobel, The Nobel Prizes 2005 (Ed. K. Grandin, [Nobel Foundation], Stockholm, 2006).

    Google Scholar 

  258. D. Astruc, The Metathesis Reactions: From a Historical Perspective to Recent Developments, New. J. Chem. 29, 42–56 (2005).

    CAS  Google Scholar 

  259. R. R. Schrock, Autobiography, in: Les Prix Nobel, The Nobel Prizes 2005 (Ed. K. Grandin, [Nobel Foundation], Stockholm, 2006).

    Google Scholar 

  260. F. N. Tebbe, G. W. Parshall, and G. S. Reddy, Olefin Homologation with Titanium Methylene Compounds, J. Am. Chem. Soc. 100, 3611–3613 (1978).

    CAS  Google Scholar 

  261. R. H. Grubbs, Autobiography, in: Les Prix Nobel, The Nobel Prizes 2005 (Ed. K. Grandin, [Nobel Foundation], Stockholm, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Werner, H. (2009). Metal Carbenes and Carbynes: The Taming of “Non-existing” Molecules. In: Landmarks in Organo-Transition Metal Chemistry. Profiles in Inorganic Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09848-7_8

Download citation

Publish with us

Policies and ethics

Navigation